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1Chapter 1

Quantum–Wave Analogies

Ever since the inception of modern quantum mechanics in 1926 physicists have relied
on quantum–wave analogies, i. e. systematic similarities shared between quantum sys-
tems and analogous systems for classical waves. The foundation of these is ultimately
that both theories describe waves. At the inception of modern quantum mechanics in
the 1920s, physicists borrowed intuition from electromagnetism and other classical
waves, and transferred it to quantum systems. However, in recent years physicists
read them the other way around: they would like to propose new experiments with
classical waves by taking inspiration from quantum mechanics. The goal of this lec-
ture series is to show how to make quantum-wave analogies rigorous, starting
from the fundamental equations.

Quantum Mechanics

i ∂tΨ = HΨ

H = (−i∇−A)2 + V

(Schrödinger equation)


?←−−−−−→



Classical Electromagnetism(
ε 0

0 µ

)
∂

∂t

(
E
H

)
=

(
−∇× H
+∇× E

)
(dynamical equations)(
∇·
∇·

)(
ε 0

0 µ

) (
E
H

)
=

(
0

0

)
(constraint equation)

The idea here is to systematically rewrite classical wave equations in the form of a
Schrödinger equation. This rephrasing rests solely on mathematical similarities be-
tween the two theories, but is not meant to imply that the physical interpretation from
quantum mechanics carries over. Recasting a classical wave equation as a Schrödinger
equation does two things: first of all, it gives us access to all the tools initially devel-
oped for quantum systems and allows us to apply them to classical wave equations.
Secondly, this presents a unified formalism for a whole class of classical wave equa-
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1 Quantum–Wave Analogies
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Figure 1.0.1: Many mathematical equations can be rephrased using different math-
ematical frameworks. That includes, the Schrödinger formalism, the
framework of classical Hamiltonian equations of motion and the La-
grangian formalism that defines equations of motion via variational prin-
ciples.

tions, and the Schrödinger formalism enables comparisons between different classical
wave equations.
Of course, we could study classical wave equations in other mathematical frame-

works (see Figure 1.0.1) such as the Lagrangian or Hamiltonian formalism. Each gives
access to a different set of tools (e. g. Noether’s theorem in case of Lagrangian me-
chanics), so for specific questions one may be more advantageous than another. And to
study similarities to quantum mechanics, not surprisingly, it is advantageous to rewrite
the wave equation in the same language that a quantum theory is described in.
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2Chapter 2

Paradigms of quantummechanics

The explanation of the photoelectric effect through light quanta is the name sake for
quantum mechanics. Quantization here refers to the idea that energy stored in light
comes in “chunks” known as photons, and that the energy per photon depends only
on the frequency. This is quite a departure from the classical theory of light through
Maxwell’s equations (cf. [Jac98]).

2.1 Two archetypical quantum systems

To introduce the main notions and emphasize the physics, we start by way of example.

2.1.1 The Stern-Gerlach experiment

The simplest bona fide quantum system is that of a quantum spin, and it can be used to
give an effective description of the Stern-Gerlach experiment where a beam of neutral
atoms with magnetic moment g is sent through a magnet with inhomogeneous mag-
netic fieldB = (B1, B2, B3). It was observed experimentally that the beam splits in two
rather than fan out with continuous distribution. Hence, the system behaves as if only
two spin configurations, spin-up ↑ and spin-down ↓, are realized. A simplified effective
model neglects the translational degree of freedom and focusses only on the internal
spin degree of freedom of the particle. Then the energy observable, the hamiltonian,
is the 2× 2 matrix

H = gB · S = H∗

3



2 Paradigms of quantum mechanics

which involves the spin operator Sj := h̄
2σj defined in terms of Planck’s constant h̄ and

the three Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
+i 0

)
, σ3 =

(
+1 0

0 −1

)
,

and the magnetic moment g and the magnetic field B. The prefactor of the Pauli
matrices are real, and thus, H = H∗ equals its adjoint and is a hermitian matrix.
For instance, assume B = (0, 0, b) points in the x3-direction. Then spin-up and spin-

down (seen from the x3-direction) are the eigenvectors of

H =

(
+h̄gb

2 0

0 −h̄gb2

)
,

i. e. ψ↑ = (1, 0) and ψ↓ = (0, 1). The dynamical equation is the Schrödinger equation

i h̄
∂

∂t
ψ(t) = Hψ(t), ψ(0) = ψ0 ∈ H. (2.1.1)

The vector spaceH = C2 becomes a Hilbert space if we equip it with the scalar product

〈ψ,φ〉C2 :=
∑
j=1,2

ψj φj .

Moreover, the hermitian matrixH can always be diagonalized, and the eigenvectors to
distinct eigenvalues are orthogonal. The complex-valued wave function ψ encapsulates
probabilities: for any ψ ∈ C2 normalized to 1 = ‖ψ‖C2 , the probability to find the
particle in the spin-up configuration is

P
(
S3 = ↑ | ψ

)
= |ψ1|2 =

∣∣〈ψ↑, ψ〉
∣∣2

since ψ↑ = (1, 0). The above notation comes from probability theory and means “the
probability of finding the random observable spin S3 in the spin-↑ configuration +h̄

2 ”.

2.1.2 A spinless, non-relativistic particle moving inRd

The second exemplary quantum system describes a non-relativistic particle of mass
m subjected to an electric field generated by the potential V . The classical Hamilton
function h(q, p) = 1

2mp
2 + V (q) is then “quantized” to

H = h
(
x̂,−ih̄∇

)
=

1

2m

(
−ih̄∇

)2
+ V (x̂) = H∗
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2.1 Two archetypical quantum systems

j / Bullets pass through a double
slit.

k / A water wave passes through
a double slit.

3.3 Wave-Particle Duality

i / Wave interference patterns
photographed by Prof. Lyman
Page with a digital camera. Laser
light with a single well-defined
wavelength passed through a
series of absorbers to cut down
its intensity, then through a set of
slits to produce interference, and
finally into a digital camera chip.
(A triple slit was actually used,
but for conceptual simplicity we
discuss the results in the main
text as if it was a double slit.) In
panel 2 the intensity has been
reduced relative to 1, and even
more so for panel 3.

How can light be both a particle and a wave? We are now
ready to resolve this seeming contradiction. Often in science when
something seems paradoxical, it’s because we either don’t define our
terms carefully, or don’t test our ideas against any specific real-world
situation. Let’s define particles and waves as follows:

• Waves exhibit superposition, and specifically interference phe-
nomena.

• Particles can only exist in whole numbers, not fractions

As a real-world check on our philosophizing, there is one partic-
ular experiment that works perfectly. We set up a double-slit inter-
ference experiment that we know will produce a di↵raction pattern
if light is an honest-to-goodness wave, but we detect the light with
a detector that is capable of sensing individual photons, e.g., a dig-
ital camera. To make it possible to pick out individual dots from
individual photons, we must use filters to cut down the intensity of
the light to a very low level, just as in the photos by Prof. Page in
section 3.1. The whole thing is sealed inside a light-tight box. The
results are shown in figure i. (In fact, the similar figures in section
3.1 are simply cutouts from these figures.)

Neither the pure wave theory nor the pure particle theory can
explain the results. If light was only a particle and not a wave, there
would be no interference e↵ect. The result of the experiment would
be like firing a hail of bullets through a double slit, j. Only two
spots directly behind the slits would be hit.

If, on the other hand, light was only a wave and not a particle,
we would get the same kind of di↵raction pattern that would happen

Section 3.3 Wave-Particle Duality 75

Figure 2.1.1: Images of a low-intensity triple slit experiment with photons (taken from
[Cro08]).

by replacing momentum p by the momentum operator P = −ih̄∇ and position q by the
multiplication operator Q = x̂.1 The hamiltonian is now an operator on the Hilbert
space L2(Rd) whose action on suitable vectors ψ is

(Hψ)(x) = − h̄
2

2m
(∆ψ)(x) + V (x)ψ(x).

Quantum particles simultaneously have wave and particle character: the Schrödinger
equation (2.1.1) is structurally very similar to a wave equation. The physical con-
stant h̄ relates the energy of a particle with the associated wave length and has units
[energy · time]. The particle aspects come into play when one measures outcomes of
experiments: consider a version of the Stern-Gerlach experiment where the intensity
of the atomic beam is so low that single atoms pass through the magnet. If the mod-
ulus square of the wave function |ψ(t, x)|2 were to describe the intensity of a matter
wave, then one expects that the two peaks build up slowly, but simultaneously. In ac-
tuality, one registers single impacts of atoms and only if one waits long enough, two
peaks emerge (similar to what one sees in a low-intensity triple slit experiment in Fig-
ure 2.1.1). This is akin to tossing a coin: one cannot see the probabilistic nature in a
few coin tosses, let alone a single one. Probabilities emerge only after repeating the
experiment often enough. These experiments show that |ψ(t, x)|2 is to be interpreted
as a probability distribution, but more on that below.
Pure states are described by wave functions, i. e. complex-valued, square integrable

1To find a consistent quantization procedure is highly non-trivial. One possibility is to use Weyl quanti-
zation [Wey27; Wig32; Moy49; Fol89; Lei10]. Such a quantization procedure also yields a formulation
of a semiclassical limit, and the names for various operators (e. g. position, momentum and angular
momentum) are then justified via a semiclassical limit. For instance, the momentum operator is −ih̄∇,
because in the semiclassical limit it plays the role of the classical momentum observable p (cf. e. g. [Lei10,
Theorem 1.0.1] and [Lei10, Theorem 7.0.1]).

5



2 Paradigms of quantum mechanics

functions. Put more precisely, we are considering L2(Rd) made up of equivalence
classes of functions with scalar product

〈φ,ψ〉 =
∫
Rd

dxφ(x)ψ(x)

and norm ‖ψ‖ :=
√
〈ψ,ψ〉. In physics text books, one usually encounters the bra-

ket notation: here |ψ〉 is a state and 〈x|ψ〉 stands for ψ(x). The scalar product of
ϕ, ψ ∈ L2(Rd) is denoted by 〈ϕ|ψ〉 and corresponds to 〈ϕ, ψ〉. Although bra-ket notation
can be ambiguous, it is sometimes useful and is also used in the mathematics literature.
The fact that L2(Rd) consists of equivalence classes of functions is only natural from

a physical perspective: if ψ1 ∼ ψ2 are in the same equivalence class (i. e. they differ on
a set of measure 0), then the associated probabilities coincide: Physically, |ψ(t, x)|2 is
interpreted as the probability to measure a particle at time t in (an infinitesimally small
box located in) location x. If we are interested in the probability that we can measure
a particle in a region Λ ⊆ Rd, we have to integrate |ψ(t, x)|2 over Λ,

P
(
X(t) ∈ Λ | ψ(t)

)
=

∫
Λ

dx |ψ(t, x)|2 . (2.1.2)

If we want to interpret |ψ|2 as probability density, then the wave function has to be
normalized, i. e.

‖ψ‖2 =

∫
Rd

dx |ψ(x)|2 = 1.

This point of view is called Born rule: |ψ|2 could either be amass or charge density – or a
probability density. To settle this, physicists have performed the double slit experiment
with an electron source of low flux (cf. Figure 2.1.1). If |ψ|2 were a density, one would
see the whole interference pattern building up slowly. Instead, one measures “single
impacts” of electrons and the result is similar to the data obtained from experiments
in statistics (e. g. the Dalton board). Hence, we speak of particles.

2.2 The mathematical framework of quantummechanics

To identify the structures common to all physical theories, let us study quantum me-
chanics in the abstract. Physical theories usually consist of three ingredients:

(1) A notion of state which encodes the configuration of the system,

(2) a notion of observable which predicts the outcome of measurements, and

(3) a dynamical equation which governs how the physical system evolves.

6



2.2 The mathematical framework of quantum mechanics

Wehave to identify the notions of states, observables and dynamical equations in Schrödinger
and Heisenberg picture. Here, Schrödinger and Heisenberg picture refer two equivalent
formulations of the dynamics where on the one hand one can evolve states or on the
other develop observables in time.

2.2.1 Quantum states

Pure states ψ ∈ H are normalized elements of a complex Hilbert spaceH. Moreover, if ψ
and ψ′ = eiϑ ψ differ only by a total phase, then they represent the same physical state
— just like one can measure only energy differences, only phase shifts are accessible to
measurements. Consequently, wave functions themselves are not measurable quantities
in experiment as a matter of principle.
The normalization condition ‖ψ‖ = 1 is key to having a probabilistic interpretation of

quantummechanics— the norm square of the wave function is just the total probability.
Another way to think of pure states is as orthogonal projections

Pψ φ := |ψ〉〈ψ|φ = 〈ψ,φ〉ψ,

where the phase ambiguity no longer matters as the orthogonal projections

Pψ φ = 〈ψ,φ〉ψ = 〈eiϑ ψ,φ〉 eiϑ ψ = Pψ′

associated to φ and φ′ = eiϑ φ coincide. Here, one can see the elegance of bra-ket
notation vs. the notation that is “mathematically proper”.

Definition 2.2.1 (Pure quantum state) A pure quantum state is represented by a nor-
malized element ψ ∈ H up to a global phase, i. e. if ϑ ∈ R, then ψ and eiϑ ψ represent the
same physical state.

Generalizations of this concept exist in the form of density operators or states defined
as linear functionals on C∗- or von Neumann algebras.

2.2.2 Quantum observables

Quantities that can be measured are represented by selfadjoint (hermitian in physics
parlance) operators F on the Hilbert spaceH (such as L2(Rd) or ℓ2(Zd,CN )), i. e. spe-
cial linear maps

F : D(F ) ⊆ H −→ H.

Here, D(F ) is the domain of the operator since typical observables are not defined
for all ψ ∈ H. This is not a mathematical subtlety with no physical content, quite the

7



2 Paradigms of quantum mechanics

contrary: consider the observable energy, typically given by

H =
1

2m
(−ih̄∇)2 + V (x̂),

then states in the domain

D(H) :=
{
ψ ∈ L2(Rd)

∣∣ Hψ ∈ L2(Rd)
}
⊆ L2(Rd)

are those of finite energy. For all ψ in the domain of the hamiltonian D(H) ⊆ L2(Rd),
the energy expectation value 〈

ψ,Hψ
〉
<∞

is bounded. Well-defined observables have domains that are dense in H. Similarly,
states in the domain D(x̂j) of the jth component of the position operator are those
that are “localized in a finite region” in the sense of expectation values. Boundary
conditions may also enter the definition of the domain: as seen in the example of the
momentum operator on [0, 1], different boundary conditions yield different momentum
operators.
The set of possible outcomes of measurements of H is its spectrum

σ(H) :=
{
z ∈ C | H − z not invertible

}
,

namely the set of complex numbers z so thatH− z is not invertible. These can include
eigenvalues, but also other types of spectra are possible if H is defined on an infinite-
dimensional Hilbert space.
The energy observable is just a specific example, but it contains all the ingredients

which enter the definition of a quantum observable:

Definition 2.2.2 (Quantum observable) A quantum observable F is a densely defined,
selfadjoint operator on a Hilbert space. The spectrum σ(F ) is the set of outcomes of mea-
surements.

Physically, results of measurements are real which is reflected in the selfadjointness of
operators (cf. [RS72, Chapter VIII]), H∗ = H, and one can show that spectra of self-
adjoint operators are necessarily subsets of the reals. Typically one “guesses” quantum
observables from classical observables: in d = 3, the angular momentum operator is

L = x̂× (−ih̄∇).

In the simplest case, one uses Dirac’s recipe (replace x by x̂ and p by −ih̄∇) on the
classical observable angular momentumL(x, p) = x×p. In other words,many quantum

8



2.2 The mathematical framework of quantum mechanics

observables are obtained as quantizations of classical observables: examples are position,
momentum and energy. Moreover, the interpretation of, say, L = x̂×(−ih̄∇) as angular
momentum is taken from classical mechanics.
Quantum mechanics is fundamentally a statistical theory: given a quantum state ψ

and a quantum observable F , we can define fundamental notions from statistics such
as the expectation value

Eψ(F ) :=
〈
ψ, Fψ

〉
(2.2.1)

and the variance

Varψ(F ) := Eψ
((
F − Eψ(F )

)2)
, (2.2.2)

which quantifies the deviation from the mean.
Hence, quantum observables, selfadjoint operators on Hilbert spaces, are bookkeep-

ing devices that have two components:

(1) The set of possible outcomes of measurements, the spectrum σ(F ), and

(2) the statistics contained in the spectral measure, which quantifies how often and
under what conditions a possible outcome occurs.

2.2.3 Time evolution

The time evolution is defined through the Schrödinger equation,

ih̄
∂

∂t
ψ(t) = Hψ(t), ψ(t) ∈ H, ψ(0) = ψ0, ‖ψ0‖ = 1. (2.2.3)

Alternatively, one can write ψ(t) = U(t)ψ0 with U(0) = 1H. Then, we have

ih̄
∂

∂t
U(t) = HU(t), U(0) = 1H.

If H were a number, one would immediately use the ansatz

U(t) = e−i t
h̄
H (2.2.4)

as solution to the Schrödinger equation. If H is a selfadjoint operator, this is still true,
but takes a lot of work to justify (2.2.4) rigorously if the domain of H is not all of H
(the case of unbounded operators, the generic case).
As has already been mentioned, we can evolve either states or observables in time

and one speaks of the Schrödinger or Heisenberg picture, respectively. In the Schrödinger
picture, pure states evolve according to

ψ(t) = U(t)ψ0

9



2 Paradigms of quantum mechanics

while observables remain fixed.
As a last point, wemention the conservation of probability: ifψ(t) solves the Schrödinger

equation for some selfadjointH, then we can check at least formally that the time evo-
lution is unitary and thus preserves probability,

d
dt
∥∥ψ(t)∥∥2 =

d
dt
〈
ψ(t), ψ(t)

〉
=
〈
1
ih̄Hψ(t), ψ(t)

〉
+
〈
ψ(t), 1

ih̄Hψ(t)
〉

=
i
h̄

(〈
ψ(t),H∗ψ(t)

〉
−
〈
ψ(t),Hψ(t)

〉)
=

i
h̄

〈
ψ(t), (H∗ −H)ψ(t)

〉
= 0.

We see that the condition H∗ = H is the key here: selfadjoint operators generate
unitary evolution groups. As a matter of fact, there are cases when one wants to vio-
late conservation of proability: one has to introduce so-called optical potentials which
simulate particle creation and annihilation.
The time evolution e−i t

h̄
H is not the only unitary group of interest, other commonly

used examples are translations in position or momentum which are generated by the
momentum and position operator, respectively (the order is reversed!), as well as ro-
tations which are generated by the angular momentum operators.

10



3Chapter 3

Electromagnetism in Matter

One of the fundamental forces of nature is the electromagnetic interaction between
charges. On the macroscopic scale, these interactions can be described by electro-
magnetic waves

(
E(t, x),H(t, x)

)
∈ R6, consisting of the electric field E(t, x) and the

magnetic field H(t, x). These fields are composed of various frequency components(
Ê(ω), Ĥ(ω)

)
=
(
F−1(E,H)

)
(ω) :=

1√
2π

∫
R
dt e+itω (E(t),H(t)). (3.0.1)

Typically, a given wave consists only of frequencies from a given range, e. g. radio
waves, microwaves, infrared light, visible light, ultraviolet light, X-rays or γ rays; often,
this frequency range is not specified by the frequency f , but the (vacuum) wavelength
λ = c/f obtained by dividing the speed of light c ' 3 · 108 m/s.
Matter consists of microscopic charges (e. g. atomic cores and electrons), and de-

pending on the wavelength, the interaction with electromagnetic waves can be quite
complicated. Depending on the wavelength different types of structures are visible to
the electromagnetic waves: X-rays can be used to probe the structure of crystal lattices
by interacting with the atomic nuclei, visible light interacts mostly with the valence
electrons and so forth.
A more fundamental first principles description would have to include the charges

as a dynamical degree of freedom, but this is usually too complicated to be of practi-
cal use and often not necessary. So instead, one commonly adopts effective equations
for the electromagnetic field only. Here, the properties of the medium enter through
constitutive relations (

D(t, x),B(t, x)
)
=
(
W(E,H)

)
(t, x) (3.0.2)

that connect the so-called auxiliary fields, the electric displacement D and the magnetic
induction B. By their very definition these quantities stand on the left-hand side of

11



3 Electromagnetism in Matter

Maxwell’s dynamical equations,

d
dt

(
D(t)
B(t)

)
=

(
+∇×H(t)
−∇× E(t)

)
−
(
J(t)
0

)
(3.0.3)

and the constraint equations, (
∇ · D(t)
∇ · B(t)

)
=

(
ρ(t)

0

)
. (3.0.4)

For these equations to be consistent, the current density J(t) and the charge density
ρ(t) need to satisfy local charge conservation,

∂tρ(t) +∇ · J(t) = 0. (3.0.5)

3.1 Maxwell’s equations for linear, lossless dielectrics

Mathematically, choosing amedium amounts to specifying constitutive relations. Many
media are to very good approximation linear, i. e.

W
(
a1 (E1,H1) + a2 (E2,H2)

)
= a1W(E1,H1) + a2W(E2,H2)

holds for arbitrary linear combinations. Moreover, when we consider electromagnetic
waves from a narrow frequency range, we can often neglect dispersion. For such time-
independent media the constitutive relations take the form(

D(t, x),B(t, x)
)
=
(
W(E,H)

)
(t, x) =W (x)

(
E(t, x),H(t, x)

)
(3.1.1)

where the 6× 6-matrix-valued function

W (x) =

(
ε(x) χEH(x)

χHE(x) µ(x)

)
is sometimes called material weights. It consists of 3× 3 blocks, the electric permittivity
ε, the magnetic permeability µ, and the bianisotropies χHE and χEH .
Simple, lossless dielectrics are characterized by the following

Assumption 3.1.1 (Material weights for a simple, lossless dielectric) We assume that
the material weightsW ∈ L∞(R3,MatC(6)

)
satisfy:

(a) The medium is lossless, i. e. the function x 7→ W (x) = W (x)∗ takes values in the
hermitian 6× 6 matrices.

12



3.2 The notion of states, observables and dynamics

(b) The material is time-reversal symmetric, i. e. it has no bianisotropy, i. e. χHE = 0 =

χEH , and the material weights are real, i. e.W (x) =W (x).

(c) The medium is a positive index medium, i. e. there exist constants 0 < Cmin ≤
Cmax < ∞ so that the 6 (necessarily real) eigenvalues

{
w1(x), . . . , w6(x)

}
of W (x)

satisfy the inequality

0 < Cmin ≤ w1(x), . . . , w6(x) ≤ Cmax <∞.

For simple dielectrics, the auxiliary fields can be eliminated from the equations, and
Maxwell’s equations then read(

ε(x) 0

0 µ(x)

)
d
dt

(
E(t)
H(t)

)
=

(
+∇×H(t)
−∇× E(t)

)
−
(
J(t)
0

)
, (3.1.2a)(

∇ · εE(t)
∇ · µH(t)

)
=

(
ρ(t)

0

)
. (3.1.2b)

It is these equations we will study in the remainder of the lecture, although our argu-
ments can certainly be generalized to include more general media.
One last note on the assumption thatW is L∞ rather than continuous. This is quite

natural as many media are obtained by alternating two or more different materials,
e. g. a dielectric and air. On the relevant length scale of the waves, the material weights
change discontinuously from, say, (εdielectric, µdielectric) to (εair, µair).

3.2 The notion of states, observables and dynamics

Now that we have set the stage by introducing the relevant mathematical equations,
let us turn our focus on how to interpret them physically. As with quantum mechanics,
let us turn our focus on how to interpret them physically. As with quantum mechan-
ics, we need to identify what states are, how measurable quantities are represented
mathematically and summarize what the dynamical equations are.
While much of what we say is much more general, we shall always suppose the

material weights are linear, non-dispersive and satisfy Assumption 3.1.1.

3.2.1 States

While electromagnetism allows for much more variety as far as the space of electro-
magnetic field is concerned, one very common assumption is that we only study states
of finite field energy

E(E,H) :=
∫
R3

dx
(
E(x)
H(x)

)
·W (x)

(
E(x)
H(x)

)
!
<∞,

13



3 Electromagnetism in Matter

where Φ(x) · Ψ(x) :=
∑6
j=1 ϕj(x)ψj(x) is the usual dot product on R6. Put another

way, we are interested in the real Hilbert space

L2
W (R3,R6) =

{
(E,H) : R3 −→ R6

∣∣ E(E,H) <∞}/ ∼
endowed with the energy scalar product

〈
(E,H), (E′,H′)

〉
W

:=

∫
R3

dx
(
E(x)
H(x)

)
·W (x)

(
E′(x)

H′(x)

)
. (3.2.1)

Note that the weighted Hilbert space L2
W (R3,R6) coincides with L2(R3,R6) as Banach

spaces (i. e. as complete, normed vector spaces), meaning that they agree as vector
spaces and the two norms are equivalent.

Definition 3.2.1 (Electromagnetic states) Electromagnetic states are electromagnetic
fields (E,H) with finite field energy that satisfy the constraint (3.1.2b), i. e. in the absence
of charges ρ = 0 the field is an element of

HR :=
{
(E,H) ∈ L2

W (R3,R6)
∣∣ ∇ · εE = 0 = ∇ · µH

}
.

When the waves are constrained to a domain Ω ⊆ R3, the relevant vector space is
L2
W (Ω,R6) instead and we need to choose boundary conditions on the surfaces (such

as those for a perfect electric conductor). All of our arguments can be adapted.

3.2.2 Observables

Measurable quantities are those that can be computed from the electromagnetic field
distribution, i. e. we put forth the following

Definition 3.2.2 (Electromagnetic observables) In classical electromagnetism observ-
ables are functionals of the fields,

F : D(F) ⊆ HR −→ R, (E,H) 7→ F(E,H).

The simplest example are components of the electric and magnetic fields themselves,

δEj,x(E,H) := Ej(x),

δHj,x(E,H) := Hj(x).

This is in contrast to quantum mechanics where as a matter of principle, the quantum
wave function is not directly accessible to measurements!

14



3.3 Fundamental properties

Many electromagnetic observables are quadratic in the fields, including the local
energy density at the point x,

ex(E,H) :=
1

2

(
E(x)
H(x)

)
·W (x)

(
E(x)
H(x)

)
,

where W are the material weights from the constitutive relations, or the total field
energy in the volume V ⊆ R3,

EV (E,H) :=
1

2

∫
V

dx
(
E(x)
H(x)

)
·W (x)

(
E(x)
H(x)

)
=

∫
V

dx ex(E,H) =
1

2

〈
1V (E,H) , 1V (E,H)

〉2
W
,

where 1V (x) = 1 when x ∈ V and 0 otherwise.
Connected to the energy density is the Poynting vector

Sx(E,H) := E×H,

since this is the current that enters the field energy conservation law for linear, lossless,
dispersionless media,

∂tex
(
E(t),H(t)

)
+∇ · Sx

(
E(t),H(t)

)
= −J(t) · E(t). (3.2.2)

3.2.3 Dynamics

The dynamical equations are (3.1.2a) and incorporate the constitutive relations (3.1.1),
which describe the properties of the medium.
Charge conservation 3.2.2 and the constraint equation (3.1.2b) enter as consistency

conditions and are needed to uniquely fix the solution to the dynamical equations. We
will see why in Section 3.3.2.

3.3 Fundamental properties

Lastly, let us discuss some fundamental properties of Maxwell’s equations.

3.3.1 Some fundamental discrete symmetries

Maxwell’s equations have a lot of discrete and continuous symmetries, and media will
selectively break symmetries of the vacuum Maxwell equations. Wigner [Wig39] derived

15



3 Electromagnetism in Matter

the vacuum Maxwell equations are the relativistic equations for a massless spin-1 par-
ticle, and so we have a complete understanding of continuous symmetries. These then
lead to various conserved quantities such as field energy and total angular momentum.
Then there are discrete symmetries that relate components of E and H,

TR
1 = σ1 ⊗ 1 : (E,H) 7→ (H,E),

TR
2 = iσ2 ⊗ 1 : (E,H) 7→ (H,−E),
TR
3 = σ3 ⊗ 1 : (E,H) 7→ (E,−H),

which can be conveniently written in terms of the usual Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
+i 0

)
, σ1 =

(
+1 0

0 −1

)
.

The operator on right-hand side of Maxwell’s dynamical equation (3.1.2a) can be
rewritten using the Pauli matrix σ2,(

+∇×H
−∇× E

)
=

(
0 +∇×

−∇× 0

)(
E
H

)
= iσ2 ⊗∇×

(
E
H

)
.

Hence, in the absence of current densities, by the (anti)commutation relations of Pauli
matrices the operator on the right-hand side commutes with TR

2 and anticommutes with
TR
1,3. So for vacuum where W = 1 the two anticommuting symmetries TR

1,3 reverse
the arrow of time, whereas the commuting symmetry TR

2 leads to a conserved quantity
— helicity. We emphasize that these symmetry operations also leave the constraint
equation (3.1.2b) untouched whenW = 1, since the two conditions

Div (E,H) =
(
∇ · E , ∇ ·H

)
= 0 ⇐⇒ DivTR

j (E,H) = 0

are equivalent.
When W 6= 1 some or all of these three symmetries are broken. Here, for media

with real material weights the deciding factor is whetherW commutes with the TR
j ,

TR
j W

?
=W TR

j . (3.3.1)

Provided this condition is satisfied, then the dynamical equations either possess a
proper symmetry (j = 2) or a time-reversal-type symmetry (j = 1, 3),

W
∂

∂t
TR
j

(
E(t)
H(t)

)
= TR

j W
∂

∂t

(
E(t)
H(t)

)
= TR

j

(
0 +∇×

−∇× 0

)(
E(t)
H(t)

)
= (−1)j

(
0 +∇×

−∇× 0

)
TR
j

(
E(t)
H(t)

)
.
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3.3 Fundamental properties

We can again show by explicit computation that in the absence of sources the con-
straints spelled out by equation (3.1.2b) are preserved by TR

j .
These symmetries are well-known in the physics literature — TR

2 is usually referred
to as dual symmetry and TR

3 as time-reversal.

3.3.2 The Helmholtz decomposition and its relation to Maxwell’s
equations

To better understand the nature of Maxwell’s equations (3.1.2) a useful concept is
derived from the Helmholtz decomposition of vector fields

F = F⊥ + F∥ = ∇× A+∇χ ∈ L2(R3,R3) (3.3.2)

into the curl of a vector potential and the gradient of a scalar potential. Equivalently,
we could define the transverse part F⊥ and the longitudinal part F∥ by demanding

∇ · F⊥ = 0,

∇× F∥ = 0.

We can succinctly write this as

F⊥ ∈ ran
(
∇×

)
⊆ ker

(
∇·
)
, (3.3.3a)

F∥ ∈ ran∇ ⊆ ker
(
∇×

)
, (3.3.3b)

because on L2(R3,R3) (and other spaces like C∞c (R3,R3), the vector space of smooth
vector fields with compact support) the Laplace equation

∆Φ = 0

has no solution apart from the trivial solution Φ = 0.
Longitudinal and transversal fields are perpendicular to each other,〈

F⊥, F∥
〉
=

∫
R3

dx F⊥(x) · F∥(x),

so that they evolve independently of one another.

Theorem 3.3.1 (Helmholtz decomposition on L2(R3,C3)) (1) The Helmholtz decom-
position (3.3.2) of vector fields exists and is unique.

(2) In equations (3.3.3) we can replace ⊆ with =, i. e.

ran
(
∇×

)
= ker

(
∇·
)
,

ran∇ = ker
(
∇×

)
.
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3 Electromagnetism in Matter

While the decomposition (3.3.2) is suitable for electromagnetic waves in vacuumwhere
the material weights W = 1 are the identity map, there exists a Helmholtz decom-
position adapted to certain electromagnetic media. To be mathematically precise, we
continue to suppose that the material weights satisfy Assumption 3.1.1. Then any
electromagnetic field

(E,H) =
(
E⊥,H⊥

)
+
(
E∥,H∥

)
(3.3.4)

can be split into its transversal part
(
E⊥,H⊥

)
defined through the divergence-free con-

dition involving the material weightsW ,

DivW
(
E⊥,H⊥

)
:=
(
∇ · εE⊥ , ∇ · µH⊥

)
= 0,

and a longitudinal gradient field(
E∥,H∥

)
=
(
∇φE ,∇φH

)
=: Grad(φE , φH).

There is a very elegant connection between the space of longitudinal gradient fields

G := ranGrad =
{
Grad(φE , φH) : R3 −→ C6

∣∣ (φE , φH) ∈ L2
loc(R

3,C2)
}
⊂ HR

and the space of transversal fields

JW := ker DivW =
{(

E⊥,H⊥
)
∈ HR

∣∣ DivW
(
E⊥,H⊥

)
= 0
}

through the energy scalar product (3.2.1), namely they are orthogonal complements
to one another,

JW = G⊥W :=
{
(E,H) ∈ HR

∣∣ 〈(E,H), (E∥,H∥)
〉
W

= 0 ∀(E∥,H∥) ∈ G
}
.

To see this, we exploit the selfadjointness of the weightsW and use partial integration
to convert Grad into Div,〈

(E,H) ,
(
E∥,H∥

)〉
W

=
〈
(E,H) ,

(
E∥,H∥

)〉
W

=
〈
W (E,H) ,

(
∇φE ,∇φH

)〉
L2(R3,R6)

= −
〈
DivW (E,H) , (φE , φH)

〉
L2(R3,R2)

!
= 0.

Since this holds for all (φE , φH), the first argument of the scalar product has to van-
ish. Consequently, we have the Helmholtz decomposition adapted to the electromagnetic
medium, which splits

L2
W (R3,C6) = JW ⊕ G. (3.3.5)
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3.3 Fundamental properties

Theorem 3.3.2 (Helmholtz decomposition adapted to dielectric media) Suppose the
material weights satisfy Assumption 3.1.1. Then the weighted Hilbert space

L2
W (R3,C6) = JW ⊕ G

admits a splitting into 〈 · , · 〉W -orthogonal subspaces composed of divergence-free fields

JW = ker
(
DivW

)
= ranM aux

and gradient fields

G = kerM aux = ran (∇,∇).
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