Photonic Topological Insulators and Their Effective Dynamics

in collarboration with Giuseppe De Nittis

Max Lein
AIMR
2015.11.02@RIKEN

Talk Based on

Collaboration with Giuseppe De Nittis

- On the Role of Symmetries in the Theory of Photonic Crystals Annals of Physics **350**, pp. 568–587, 2014
- Effective Light Dynamics in Perturbed Photonic Crystals Comm. Math. Phys. **332**, issue 1, pp. 221–260, 2014
- Derivation of Ray Optics Equations in Photonic Crystals Via a Semiclassical Limit
 - arxiv:1502.07235, submitted for publication, 2015

Periodic Light Conductors

Photonic Crystals

Johnson & Joannopoulos (2004)

Periodic Waveguide Arrays

Rechtsman, Szameit et al (2013)

- periodic structure \Longrightarrow peculiar light conduction properties
- natural photonic crystals: gem stones, beetle shells, butterfly wings, chameleon
- artificial PLCs can be engineered arbitrarily and inexpensively
- "band structure engineering"
 - → photonic band gaps, slow light, low-dispersion materials

A Novel Class of Materials: Photonic Topological Insulators

Theory

Predicted by

- Onoda, Murakami and Nagaosa (2004)
- Raghu and Haldane (2005)

Experiment

... and realized in

- 2d photonic crystals for microwaves by Joannopoulos, Soljačić et al (2009)
- periodic waveguide arrays for light at optical frequencies by Rechtsman, Szameit et al (2013)

A Novel Class of Materials: Photonic Topological Insulators

$$\begin{pmatrix} \overline{\varepsilon} & 0 \\ 0 & \overline{\mu} \end{pmatrix} \neq \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix}$$
 symmetry breaking
$$= \frac{1}{2}$$

Intro

Joannopoulos, Soljačić et al (2009)

- Realize many effects for light at **optical** frequencies.
 Necessary for integration with electronic devices
- Include topological effects.

- Rely as much as possible on **ordinary** materials.

 → Ordinary materials in non-trivial topological class!
- Include non-linear effects.
 Should be particularly strong in topological edge modes (remain localized!)

- Realize many effects for light at **optical** frequencies.
 Necessary for integration with electronic devices
- Include topological effects.

- Rely as much as possible on **ordinary** materials.
 Ordinary materials in non-trivial topological class.
- Include non-linear effects.
 Should be particularly strong in topological edge modes (remain localized!)

- Realize many effects for light at optical frequencies.
 Necessary for integration with electronic devices
- Include topological effects.

- Rely as much as possible on ordinary materials.
 Ordinary materials in non-trivial topological class!
- Include non-linear effects.
 Should be particularly strong in topological edge modes (remain localized!)

- Realize many effects for light at **optical** frequencies.
 - → Necessary for integration with electronic devices
- Include topological effects.

- Rely as much as possible on ordinary materials.
 - → Ordinary materials in non-trivial topological class!
- Include non-linear effects.
 - → Should be particularly strong in topological edge modes (remain localized!)

- Realize many effects for light at optical frequencies.
 Necessary for integration with electronic devices
- Include topological effects.

- Rely as much as possible on ordinary materials.
 → Ordinary materials in non-trivial topological class!
- Include non-linear effects.
 Should be particularly strong in topological edge modes (remain localized!)

Part 1
Schrödinger Formalism of Light

Part 2

Intro

A Primer on Topological Insulators

Part 3

Photonic Topological Insulators

Part 4

Effective Models

Part 1 Schrödinger Formalism of Light

This is only a **mathematical procedure**, allows to **adapt many techniques** initially developed for quantum mechanics **to classical electromagnetism**.

Photonic Cyrstals

Johnson & Joannopoulos (2004)

Assumption (Material weights)

$$W(x) = \begin{pmatrix} \varepsilon(x) & \chi(x) \\ \chi(x)^* & \mu(x) \end{pmatrix}$$

- 2 $0 < c 1 \le W \le C 1$ (excludes negative index mat.)
- W frequency-independent (response instantaneous)
- **4** *W periodic wrt lattice* $\Gamma \simeq \mathbb{Z}^3$

Photonic Cyrstals

Maxwell equations

Dynamical equations

$$\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \, \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} +\nabla_{\mathbf{X}} \times \mathbf{H} \\ -\nabla_{\mathbf{X}} \times \mathbf{E} \end{pmatrix}$$

Absence of sources

$$\begin{pmatrix} \nabla \cdot (\varepsilon \mathbf{E} + \chi \mathbf{H}) \\ \nabla \cdot (\chi^* \mathbf{E} + \mu \mathbf{H}) \end{pmatrix} = 0$$

Johnson & Joannopoulos (2004)

Photonic Cyrstals

Maxwell equations

Dynamical equations

$$\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \, \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} +\nabla_{\mathbf{X}} \times \mathbf{H} \\ -\nabla_{\mathbf{X}} \times \mathbf{E} \end{pmatrix}$$

Absence of sources

$$\begin{pmatrix} \operatorname{div} & 0 \\ 0 & \operatorname{div} \end{pmatrix} \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0$$

Johnson & Joannopoulos (2004)

Field energy

$$\mathcal{E} \big(\mathbf{E}, \mathbf{H} \big) = \frac{1}{2} \int_{\mathbb{R}^3} \mathrm{d} x \, \begin{pmatrix} \mathbf{E}(\mathbf{x}) \\ \mathbf{H}(\mathbf{x}) \end{pmatrix} \cdot \begin{pmatrix} \varepsilon(\mathbf{x}) & \chi(\mathbf{x}) \\ \chi(\mathbf{x})^* & \mu(\mathbf{x}) \end{pmatrix} \begin{pmatrix} \mathbf{E}(\mathbf{x}) \\ \mathbf{H}(\mathbf{x}) \end{pmatrix}$$

② Dynamical equations

$$\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{X}} \times \mathbf{H} \\ +\nabla_{\mathbf{X}} \times \mathbf{E} \end{pmatrix}$$

$$\begin{pmatrix} \mathsf{div} & 0 \\ 0 & \mathsf{div} \end{pmatrix} \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0$$

Field energy

$$\mathcal{E}ig(\mathbf{E},\mathbf{H}ig)=\mathcal{E}ig(\mathbf{E}(t),\mathbf{H}(t)ig)$$

② Dynamical equations

$$\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \; \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{X}} \times \mathbf{H} \\ +\nabla_{\mathbf{X}} \times \mathbf{E} \end{pmatrix}$$

$$\begin{pmatrix} \operatorname{div} & 0 \\ 0 & \operatorname{div} \end{pmatrix} \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0$$

Field energy

$$\mathcal{E} \big(\mathbf{E}, \mathbf{H} \big) = \frac{1}{2} \int_{\mathbb{R}^3} \mathrm{d} x \, \begin{pmatrix} \mathbf{E}(\mathbf{x}) \\ \mathbf{H}(\mathbf{x}) \end{pmatrix} \cdot \begin{pmatrix} \varepsilon(\mathbf{x}) & \chi(\mathbf{x}) \\ \chi(\mathbf{x})^* & \mu(\mathbf{x}) \end{pmatrix} \begin{pmatrix} \mathbf{E}(\mathbf{x}) \\ \mathbf{H}(\mathbf{x}) \end{pmatrix}$$

② Dynamical equations

$$\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{X}} \times \mathbf{H} \\ +\nabla_{\mathbf{X}} \times \mathbf{E} \end{pmatrix}$$

$$\begin{pmatrix} \mathsf{div} & 0 \\ 0 & \mathsf{div} \end{pmatrix} \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0$$

① Field energy $(\mathbf{E},\mathbf{H})\in \mathit{L}^2_{\mathsf{w}}(\mathbb{R}^3,\mathbb{C}^6)$ with energy norm

$$\left\| (\mathbf{E}, \mathbf{H}) \right\|_{L^2_w}^2 = \int_{\mathbb{R}^3} \mathrm{d}x \, \begin{pmatrix} \mathbf{E}(\mathbf{x}) \\ \mathbf{H}(\mathbf{x}) \end{pmatrix} \cdot \begin{pmatrix} \varepsilon(\mathbf{x}) & \chi(\mathbf{x}) \\ \chi(\mathbf{x})^* & \mu(\mathbf{x}) \end{pmatrix} \begin{pmatrix} \mathbf{E}(\mathbf{x}) \\ \mathbf{H}(\mathbf{x}) \end{pmatrix}$$

② Dynamical equations ~ »Schrödinger equation«

$$\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{x}} \times \mathbf{H} \\ +\nabla_{\mathbf{x}} \times \mathbf{E} \end{pmatrix}$$

$$J_w =$$

① Field energy $(\mathbf{E},\mathbf{H}) \in L^2_{w}(\mathbb{R}^3,\mathbb{C}^6)$ with energy norm

$$\|(\mathbf{E},\mathbf{H})\|_{L_{\mathbf{W}}^2}^2 = 2 \, \mathcal{E}(\mathbf{E},\mathbf{H})$$

② Dynamical equations ~ »Schrödinger equation«

$$\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{X}} \times \mathbf{H} \\ +\nabla_{\mathbf{X}} \times \mathbf{E} \end{pmatrix}$$

$$J_W =$$

① Field energy $(\mathbf{E},\mathbf{H}) \in L^2_w(\mathbb{R}^3,\mathbb{C}^6)$ with energy scalar product

$$\left\langle (\mathbf{E}',\mathbf{H}'),(\mathbf{E},\mathbf{H})\right\rangle _{\mathbf{W}}=\left\langle (\mathbf{E}',\mathbf{H}'),\mathbf{W}(\mathbf{E},\mathbf{H})\right\rangle _{L^{2}(\mathbb{R}^{3},\mathbb{C}^{6})}$$

② Dynamical equations → »Schrödinger equation«

$$\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{X}} \times \mathbf{H} \\ +\nabla_{\mathbf{X}} \times \mathbf{E} \end{pmatrix}$$

$$J_{W} =$$

① Field energy $(\mathbf{E},\mathbf{H}) \in L^2_{\mathsf{w}}(\mathbb{R}^3,\mathbb{C}^6)$ with energy scalar product

$$\left\langle (\mathbf{E}',\mathbf{H}'),(\mathbf{E},\mathbf{H})\right\rangle_{\mathbf{W}}=\left\langle (\mathbf{E}',\mathbf{H}'),\mathbf{W}(\mathbf{E},\mathbf{H})\right\rangle_{L^{2}(\mathbb{R}^{3},\mathbb{C}^{6})}$$

② Dynamical equations ~ »Schrödinger equation«

$$\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \; \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{X}} \times \mathbf{H} \\ +\nabla_{\mathbf{X}} \times \mathbf{E} \end{pmatrix}$$

$$J_W =$$

① Field energy $(\mathbf{E},\mathbf{H}) \in L^2_{\mathbf{w}}(\mathbb{R}^3,\mathbb{C}^6)$ with energy scalar product

$$\left\langle (\mathbf{E}',\mathbf{H}'),(\mathbf{E},\mathbf{H})\right\rangle _{\mathbf{W}}=\left\langle (\mathbf{E}',\mathbf{H}'),\mathbf{W}(\mathbf{E},\mathbf{H})\right\rangle _{L^{2}(\mathbb{R}^{3},\mathbb{C}^{6})}$$

② Dynamical equations \(\sim \) »Schrödinger equation«

$$\mathbf{i}\frac{\partial}{\partial t}\begin{pmatrix}\mathbf{E}\\\mathbf{H}\end{pmatrix} = \begin{pmatrix}\varepsilon & \chi\\\chi^* & \mu\end{pmatrix}^{-1}\begin{pmatrix}0 & +\mathrm{i}\nabla^\times\\-\mathrm{i}\nabla^\times & 0\end{pmatrix}\begin{pmatrix}\mathbf{E}\\\mathbf{H}\end{pmatrix}$$

$$J_W =$$

lacktriangledown Field energy $(\mathbf{E},\mathbf{H})\in L^2_{\mathbf{w}}(\mathbb{R}^3,\mathbb{C}^6)$ with energy scalar product

$$\left\langle (\mathbf{E}',\mathbf{H}'),(\mathbf{E},\mathbf{H})\right\rangle _{\mathbf{W}}=\left\langle (\mathbf{E}',\mathbf{H}'),\mathbf{W}(\mathbf{E},\mathbf{H})\right\rangle _{L^{2}(\mathbb{R}^{3},\mathbb{C}^{6})}$$

② Dynamical equations ~ »Schrödinger equation«

$$\mathbf{i}\frac{\partial}{\partial t}\underbrace{\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}}_{=\Psi} = \underbrace{\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}^{-1} \begin{pmatrix} 0 & +\mathbf{i}\nabla^{\times} \\ -\mathbf{i}\nabla^{\times} & 0 \end{pmatrix}}_{=\mathcal{M}} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

$$J_w =$$

① Field energy $(\mathbf{E},\mathbf{H}) \in L^2_{\mathbf{w}}(\mathbb{R}^3,\mathbb{C}^6)$ with energy scalar product

$$\left\langle (\mathbf{E}',\mathbf{H}'),(\mathbf{E},\mathbf{H})\right\rangle_{\mathbf{W}} = \left\langle (\mathbf{E}',\mathbf{H}'), \mathit{W}(\mathbf{E},\mathbf{H})\right\rangle_{\mathit{L}^{2}(\mathbb{R}^{3},\mathbb{C}^{6})}$$

② Dynamical equations → »Schrödinger equation«

$$i\frac{\partial}{\partial t}\Psi = M\Psi$$

$$J_{W} =$$

① Field energy $(\mathbf{E},\mathbf{H}) \in L^2_{\mathbf{w}}(\mathbb{R}^3,\mathbb{C}^6)$ with energy scalar product

$$\left\langle (\mathbf{E}',\mathbf{H}'),(\mathbf{E},\mathbf{H})\right\rangle _{\mathbf{W}}=\left\langle (\mathbf{E}',\mathbf{H}'),\mathbf{W}(\mathbf{E},\mathbf{H})\right\rangle _{L^{2}(\mathbb{R}^{3},\mathbb{C}^{6})}$$

② Dynamical equations ~> »Schrödinger equation«

$$\mathbf{i}\frac{\partial}{\partial t}\underbrace{\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}}_{=\Psi} = \underbrace{\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}^{-1} \begin{pmatrix} 0 & +\mathbf{i}\nabla^{\times} \\ -\mathbf{i}\nabla^{\times} & 0 \end{pmatrix}}_{=\mathcal{M}} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

$$J_{w} =$$

① Field energy $(\mathbf{E},\mathbf{H}) \in L^2_{\mathsf{w}}(\mathbb{R}^3,\mathbb{C}^6)$ with energy scalar product

$$\left\langle (\mathbf{E}',\mathbf{H}'),(\mathbf{E},\mathbf{H})\right\rangle _{\mathbf{W}}=\left\langle (\mathbf{E}',\mathbf{H}'),\mathbf{W}(\mathbf{E},\mathbf{H})\right\rangle _{l^{2}(\mathbb{R}^{3},\mathbb{C}^{6})}$$

② Dynamical equations → »Schrödinger equation«

$$\mathbf{i} \frac{\partial}{\partial t} \underbrace{\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}}_{=\Psi} = \underbrace{\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}^{-1} \begin{pmatrix} 0 & +\mathbf{i} \nabla^{\times} \\ -\mathbf{i} \nabla^{\times} & 0 \end{pmatrix}}_{=M} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

$$J_{\textit{W}} = \left\{ \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \in \mathcal{L}^2_{\textit{W}}(\mathbb{R}^3, \mathbb{C}^6) \ \middle| \ \begin{pmatrix} \operatorname{div} & 0 \\ 0 & \operatorname{div} \end{pmatrix} \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0 \right\}$$

lacktriangledown Field energy $(\mathbf{E},\mathbf{H})\in L^2_{\mathbf{w}}(\mathbb{R}^3,\mathbb{C}^6)$ with energy scalar product

$$\left\langle (\mathbf{E}',\mathbf{H}'),(\mathbf{E},\mathbf{H})\right\rangle _{\mathbf{W}}=\left\langle (\mathbf{E}',\mathbf{H}'),\mathbf{W}(\mathbf{E},\mathbf{H})\right\rangle _{L^{2}(\mathbb{R}^{3},\mathbb{C}^{6})}$$

Dynamical equations \(\simes \) Schrödinger equation«

$$\mathbf{i} \frac{\partial}{\partial t} \underbrace{\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}}_{=\Psi} = \underbrace{\begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}^{-1} \begin{pmatrix} 0 & +\mathbf{i} \nabla^{\times} \\ -\mathbf{i} \nabla^{\times} & 0 \end{pmatrix}}_{=\mathcal{M}} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

$$J_w = G^{\perp_w}$$
, $G = \text{gradient fields}$

$$M = \begin{pmatrix} \varepsilon(\mathbf{x}) & \chi(\mathbf{x}) \\ \chi(\mathbf{x})^* & \mu(\mathbf{x}) \end{pmatrix}^{-1} \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix}$$
$$= W^{-1} \operatorname{Rot}$$

$$\begin{split} \left\langle \Psi, \mathit{M}\Phi \right\rangle_{\mathit{W}} &= \left\langle \Psi, \mathit{W}\,\mathit{W}^{-1}\,\mathsf{Rot}\Phi \right\rangle = \left\langle \mathsf{Rot}\Psi, \Psi \right\rangle \\ &= \left\langle \mathit{W}\,\mathit{M}\Psi, \Phi \right\rangle = \left\langle \mathit{M}\Psi, \mathit{W}\,\Phi \right\rangle = \left\langle \mathit{M}\Psi, \Phi \right\rangle_{\mathit{W}} \end{split}$$

The Maxwell Operator

$$M = \begin{pmatrix} \varepsilon(\mathbf{x}) & \chi(\mathbf{x}) \\ \chi(\mathbf{x})^* & \mu(\mathbf{x}) \end{pmatrix}^{-1} \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix}$$
$$= W^{-1} \operatorname{Rot}$$

 $M = M^*$ hermitian on weighted Hilbert space

$$\begin{split} \left\langle \Psi, \mathit{M}\Phi \right\rangle_{\mathit{W}} &= \left\langle \Psi, \mathit{W}\,\mathit{W}^{-1}\,\mathsf{Rot}\Phi \right\rangle = \left\langle \mathsf{Rot}\Psi, \Psi \right\rangle \\ &= \left\langle \mathit{W}\,\mathit{M}\Psi, \Phi \right\rangle = \left\langle \mathit{M}\Psi, \mathit{W}\,\Phi \right\rangle = \left\langle \mathit{M}\Psi, \Phi \right\rangle_{\mathit{W}} \end{split}$$

The Maxwell Operator

$$M = \begin{pmatrix} \varepsilon(\mathbf{x}) & \chi(\mathbf{x}) \\ \chi(\mathbf{x})^* & \mu(\mathbf{x}) \end{pmatrix}^{-1} \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix}$$
$$= W^{-1} \operatorname{Rot}$$

 $M = M^*$ hermitian on weighted Hilbert space

$$\begin{split} \left\langle \Psi, \mathit{M}\Phi \right\rangle_{\mathit{W}} &= \left\langle \Psi, \mathit{W}\,\mathit{W}^{-1}\,\mathsf{Rot}\Phi \right\rangle = \left\langle \mathsf{Rot}\Psi, \Psi \right\rangle \\ &= \left\langle \mathit{W}\,\mathit{M}\Psi, \Phi \right\rangle = \left\langle \mathit{M}\Psi, \mathit{W}\,\Phi \right\rangle = \left\langle \mathit{M}\Psi, \Phi \right\rangle_{\mathit{W}} \end{split}$$

The Maxwell Operator

$$M = \begin{pmatrix} \varepsilon(\mathbf{x}) & \chi(\mathbf{x}) \\ \chi(\mathbf{x})^* & \mu(\mathbf{x}) \end{pmatrix}^{-1} \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix}$$
$$= W^{-1} \operatorname{Rot}$$

 $M = M^*$ hermitian on weighted Hilbert space

$$\begin{split} \left\langle \Psi, \mathbf{M} \Phi \right\rangle_{\mathbf{W}} &= \left\langle \Psi, W \, W^{-1} \, \mathrm{Rot} \Phi \right\rangle = \left\langle \mathrm{Rot} \Psi, \Psi \right\rangle \\ &= \left\langle W \, M \Psi, \Phi \right\rangle = \left\langle M \Psi, W \, \Phi \right\rangle = \left\langle \mathbf{M} \Psi, \Phi \right\rangle_{\mathbf{W}} \end{split}$$

Quantum-Light Analogies

	Photonics	Quantum mechanics
$\Psi =$	em field	wave function
Hilbert space	$\mathcal{L}^2_{w}(\mathbb{R}^3,\mathbb{C}^6)$	$L^2(\mathbb{R}^d)$
$\ \Psi\ ^2 =$	field energy	probability
generator dynamics	Maxwell operator $M = M^* = W$ Rot	hamiltonian $H=H^*=-\Delta+V$

Quantum-Light Analogies

»A photonic crystal is to light what a crystalline solid is to an electron.«

Quantum-Light Analogies

photonic crystals ←→ crystalline solids

Frequency band picture

→ "photonic semiconductor"

Ray optics equations Onoda et al (2004)

Raghu & Haldane (2006) De Nittis & L. (2015)

$$\dot{r} = +\nabla_k \Omega + \lambda \Xi_{\mathsf{Berry}} \times \dot{k}$$

 $\dot{k} = -\nabla_r \Omega$

 $\Omega(r, k) = \text{modified dispersion}$

De Nittis & L. (2015): via "semiclassical" Egorov theorem

$$\begin{split} \mathbf{M} &\cong \mathbf{M}^{\mathcal{F}} = \int_{\mathbb{B}}^{\oplus} \mathrm{d}k \; \mathbf{M}(k) \\ &= \int_{\mathbb{B}}^{\oplus} \mathrm{d}k \; \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}^{-1} \; \begin{pmatrix} 0 & +(-\mathrm{i}\nabla_y + k)^\times \\ -(-\mathrm{i}\nabla_y + k)^\times & 0 \end{pmatrix} \end{split}$$

$$\mathfrak{D}\big(\mathit{M}(\mathit{k})\big) = \underbrace{\big(\mathit{H}^1(\mathbb{T}^3,\mathbb{C}^6)\cap\mathit{J}_{\mathit{W}}(\mathit{k})\big)}_{\text{physical states}} \oplus \mathit{G}(\mathit{k}) \subset \mathit{L}^2_{\mathit{W}}(\mathbb{T}^3,\mathbb{C}^6)$$

$$M(k)|_{G(k)} = 0 \Rightarrow \text{focus on } M(k)|_{J_w(k)}$$

$$\begin{split} \mathit{M} &\cong \mathit{M}^{\mathcal{F}} = \int_{\mathbb{B}}^{\oplus} \mathsf{d}k \, \mathit{M}(k) \\ &= \int_{\mathbb{B}}^{\oplus} \mathsf{d}k \, \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}^{-1} \begin{pmatrix} 0 & +(-\mathsf{i}\nabla_y + k)^\times \\ -(-\mathsf{i}\nabla_y + k)^\times & 0 \end{pmatrix} \\ \mathfrak{D} \big(\mathit{M}(k) \big) &= \underbrace{ \big(\mathit{H}^1(\mathbb{T}^3, \mathbb{C}^6) \cap \mathit{J}_w(k) \big)}_{\text{physical states}} \oplus \mathit{G}(k) \subset \mathit{L}^2_w(\mathbb{T}^3, \mathbb{C}^6) \end{split}$$

 $M(k)|_{G(k)} = 0 \Rightarrow$ focus on $M(k)|_{J_w(k)}$

Physical bands

$$M(k)\varphi_n(k) = \omega_n(k)\varphi_n(k)$$

- Frequency band functions $k \mapsto \omega_n(k)$
- Bloch functions $k \mapsto \varphi_n(k)$
- both locally continuous everywhere
- both **locally analytic** away from band crossings

Part 2 A Primer on Topological Insulators

Fundamental Notions

Altland-Zirnbauer Classification of Topological Insulators

The 10-fold way

- **① Topological class** of $H \longleftrightarrow$ Symmetries of H
- Phases inside each topological class \longleftrightarrow Labeled by topological invariants
- 3 Bulk-edge correspondences

- **Relies on** $i\partial_t \psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2=\pm \mathrm{id}$,

$$UH(k)$$
 $U^{-1}=+H(-k)$ time-reversal symmetry (\pm TR) $UH(k)$ $U^{-1}=-H(-k)$ particle-hole (pseudo) symmetry (\pm PH) $UH(k)$ $U^{-1}=-H(+k)$ chiral (pseudo) symmetry (χ)

- 1+5+4=10 topological classes
- Physics crucially depends on topological class.

- Relies on i $\partial_t \psi = H \psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2=\pm \mathrm{id}$,

$$UH(k) \ U^{-1} = +H(-k)$$
 time-reversal symmetry (\pm TR) $UH(k) \ U^{-1} = -H(-k)$ particle-hole (pseudo) symmetry (\pm PH) $UH(k) \ U^{-1} = -H(+k)$ chiral (pseudo) symmetry (χ)

- 1 + 5 + 4 = 10 topological classes
- Physics crucially depends on topological class

- Relies on i $\partial_t \psi = H \psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2=\pm \mathrm{id}$,

$$UH(k) \ U^{-1} = +H(-k)$$
 time-reversal symmetry (\pm TR)
 $UH(k) \ U^{-1} = -H(-k)$ particle-hole (pseudo) symmetry (\pm PH)
 $UH(k) \ U^{-1} = -H(+k)$ chiral (pseudo) symmetry (χ)

- 1+5+4=10 topological classes
- Physics crucially depends on topological class

- Relies on $i\partial_t \psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm id$,

$$UH(k) U^{-1} = +H(-k)$$
 time-reversal symmetry (\pm TR)
 $UH(k) U^{-1} = -H(-k)$ **particle-hole (pseudo) symmetry (\pm PH)**
 $UH(k) U^{-1} = -H(+k)$ chiral (pseudo) symmetry (χ)

- 1+5+4=10 topological classes
- Physics crucially depends on topological class

- Relies on i $\partial_t \psi = H \psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2=\pm \mathrm{id}$,

$$UH(k) U^{-1} = +H(-k)$$
 time-reversal symmetry (\pm TR)
 $UH(k) U^{-1} = -H(-k)$ particle-hole (pseudo) symmetry (\pm PH)
 $UH(k) U^{-1} = -H(+k)$ chiral (pseudo) symmetry (χ)

- \bullet 1 + 5 + 4 = 10 topological classes
- Physics crucially depends on topological class

- Relies on $i\partial_t \psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2=\pm \mathrm{id}$,

$$UH(k) \ U^{-1} = +H(-k)$$
 time-reversal symmetry (\pm TR) $UH(k) \ U^{-1} = -H(-k)$ particle-hole (pseudo) symmetry (\pm PH) $UH(k) \ U^{-1} = -H(+k)$ chiral (pseudo) symmetry (χ)

- \bullet 1 + 5 + 4 = 10 topological classes
- Physics crucially depends on topological class.

Phases Inside Topological Classes

- Inequivalent phases inside each topological class
- Continuous, symmetry-preserving deformations of H cannot change topological phase, unless either
 - the energy gap closes (periodic case) or
 - a localization-delocalization transition happens (random case)
- Phases labeled by finite set of topological invariants (e. g. Chern numbers but also others)
- Number and type of topological invariants determined by
 - symmetries ←⇒ topological class and
 - dimension of the system
- Notion that Topological Insulator \iff Chern number \neq 0 false!

Phases Inside Topological Classes

- Inequivalent phases inside each topological class
- Continuous, symmetry-preserving deformations of H cannot change topological phase, unless either
 - the energy gap closes (periodic case) or
 - a localization-delocalization transition happens (random case)
- Phases labeled by finite set of topological invariants (e. g. Chern numbers but also others)
- Number and type of topological invariants determined by
 - symmetries ←⇒ topological class and
 - dimension of the system
- Notion that Topological Insulator \iff Chern number $\neq 0$ false!

Phases Inside Topological Classes

- Inequivalent phases inside each topological class
- Continuous, symmetry-preserving deformations of H cannot change topological phase, unless either
 - the energy gap closes (periodic case) or
 - a localization-delocalization transition happens (random case)
- Phases labeled by finite set of topological invariants (e. g. Chern numbers but also others)
- Number and type of topological invariants determined by
 - symmetries ←⇒ topological class and
 - dimension of the system
- Notion that Topological Insulator \iff Chern number \neq 0 *false!*

- Properties on the boundary can be inferred from the bulk
- Consists of 3 equalities:

$$O_{
m bulk}(t)pprox T_{
m bulk}$$
 $O_{
m edge}(t)pprox T_{
m edge}$ $T_{
m bulk}=T_{
m edge}$

- Number and form depends on the topological class
- Find topological observables

- Properties on the boundary can be inferred from the bulk
- Consists of 3 equalities:

$$O_{
m bulk}(t) pprox T_{
m bulk}$$
 $O_{
m edge}(t) pprox T_{
m edge}$ $T_{
m bulk} = T_{
m edge}$

- Number and form depends on the topological class
- Find topological observables

- Properties on the boundary can be inferred from the bulk
- Consists of 3 equalities:

$$O_{
m bulk}(t)pprox T_{
m bulk} \ O_{
m edge}(t)pprox T_{
m edge} \ T_{
m bulk} = T_{
m edge}$$

- Number and form depends on the topological class
- Find topological observables

- Properties on the boundary can be inferred from the bulk
- Consists of 3 equalities:

$$O_{
m bulk}(t)pprox T_{
m bulk} \ O_{
m edge}(t)pprox T_{
m edge} \ T_{
m bulk}=T_{
m edge}$$

- Number and form depends on the topological class
- Find topological observables

Part 3 Photonic Topological Insulators

$$W = \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} = \begin{pmatrix} \operatorname{Re} \varepsilon & 0 \\ 0 & \operatorname{Re} \mu \end{pmatrix}, \qquad \varepsilon \not\propto \mu$$

- ① $C: (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, \overline{\mathbf{H}})$ complex conjugation relies on $\varepsilon, \mu, \chi \in \mathbb{R}$, "real fields remain real"
- ② $J: (\mathbf{E}, \mathbf{H}) \mapsto (\mathbf{E}, -\mathbf{H})$ implements time-reversal relies on y = 0
- ③ $T = JC : (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, -\overline{\mathbf{H}})$ implements time-reversal

$$W = \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} = \begin{pmatrix} \operatorname{Re} \varepsilon & 0 \\ 0 & \operatorname{Re} \mu \end{pmatrix}, \qquad \varepsilon \not\propto \mu$$

- ① $C: (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, \overline{\mathbf{H}})$ complex conjugation relies on $\varepsilon, \mu, \chi \in \mathbb{R}$, "real fields remain real"
- ② $J: (\mathbf{E}, \mathbf{H}) \mapsto (\mathbf{E}, -\mathbf{H})$ implements time-reversal relies on $\gamma = 0$
- 3 $T = JC : (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, -\overline{\mathbf{H}})$ implements time-reversal

$$W = \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} = \begin{pmatrix} \operatorname{Re} \varepsilon & 0 \\ 0 & \operatorname{Re} \mu \end{pmatrix}, \qquad \varepsilon \not\propto \mu$$

- ① $C: (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, \overline{\mathbf{H}})$ complex conjugation relies on $\varepsilon, \mu, \chi \in \mathbb{R}$, "real fields remain real"
- ② $J: (\mathbf{E}, \mathbf{H}) \mapsto (\mathbf{E}, -\mathbf{H})$ implements time-reversal relies on $\chi = 0$
- ③ $T = JC : (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, -\overline{\mathbf{H}})$ implements time-reversal

$$W = \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} = \begin{pmatrix} \operatorname{Re} \varepsilon & 0 \\ 0 & \operatorname{Re} \mu \end{pmatrix}, \qquad \varepsilon \not\propto \mu$$

- ① $C: (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, \overline{\mathbf{H}})$ complex conjugation relies on $\varepsilon, \mu, \chi \in \mathbb{R}$, "real fields remain real"
- ② $J: (\mathbf{E}, \mathbf{H}) \mapsto (\mathbf{E}, -\mathbf{H})$ implements time-reversal relies on $\chi = 0$
- ③ $T = JC : (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, -\overline{\mathbf{H}})$ implements time-reversal

$$W = \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} = \begin{pmatrix} \operatorname{Re} \varepsilon & 0 \\ 0 & \operatorname{Re} \mu \end{pmatrix}, \qquad \varepsilon \not\propto \mu$$

- ① $C: (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, \overline{\mathbf{H}})$ complex conjugation relies on $\varepsilon, \mu, \chi \in \mathbb{R}$, "real fields remain real"
- ② $J: (\mathbf{E}, \mathbf{H}) \mapsto (\mathbf{E}, -\mathbf{H})$ implements time-reversal relies on $\chi = 0$
- 3 $T = JC : (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, -\overline{\mathbf{H}})$ implements time-reversal

These 3 symmetries can be broken separately!

CAZ Classification of Ordinary PhCs

Symmetry	Action	Classified as	Physical meaning
С	CM(k)C = -M(-k)	+PH	"real states remain real"
$J=\sigma_3\otimes id$	JM(k)J = -M(+k)	χ	implements time-reversal
T = JC	TM(k) T = +M(-k)	+TR	implements time-reversal

⇒ Ordinary PhCs are of class BD

CAZ Classification of Ordinary PhCs

Symmetry	Action	Classified as	Physical meaning
С	CM(k)C = -M(-k)	+PH	"real states remain real"
$J = \sigma_3 \otimes id$	JM(k)J = -M(+k)	χ	implements time-reversal
T = JC	TM(k) T = +M(-k)	+TR	implements time-reversal

⇒ Ordinary PhCs are of class BDI

Comparison Between Photonics and Quantum Mechanics

Material	Photonics	Quantum mechanics
ordinary	class BDI +PH, +TR, χ	class AI +TR
exhibiting edge currents	class AllI χ	class A/AII none/-TR

Important consequences

- Class BDI not topologically trivial (also relevant in theory of topological superconductors)
- Existing derivations of topological effects in crystalline solids do not automatically apply to photonic crystals

Comparison Between Photonics and Quantum Mechanics

Material	Photonics	Quantum mechanics
ordinary	class BDI +PH, +TR, χ	class AI +TR
exhibiting edge currents	class Alll χ	class A/AII none/-TR

Important consequences

- Class BDI not topologically trivial
 (also relevant in theory of topological superconductors)
- Existing derivations of topological effects in crystalline solids do not automatically apply to photonic crystals

Comparison Between Photonics and Quantum Mechanics

Material	Photonics	Quantum mechanics
ordinary	class BDI +PH, +TR, χ	class Al +TR
exhibiting edge currents	class AllI χ	class A/AII none/-TR

Important consequences

- Class BDI not topologically trivial
 (also relevant in theory of topological superconductors)
- Existing derivations of topological effects in crystalline solids do not automatically apply to photonic crystals

What about other symmetries?

Symmetries of Maxwell Operator in Matter

Product structure of $M = W^{-1}$ Rot:

$$\begin{array}{c}
 U \operatorname{Rot} U^{-1} = \pm \operatorname{Rot} \\
 U W U^{-1} = \pm W
 \end{array}
 \qquad \Longrightarrow \quad U M U^{-1} = \pm M$$

(Signs may be different)

What form do the symmetries U take?

Symmetries of Maxwell Operator in Matter

Product structure of $M = W^{-1}$ Rot:

$$\begin{array}{c}
 U \operatorname{Rot} U^{-1} = \pm \operatorname{Rot} \\
 U W U^{-1} = \pm W
 \end{array}
 \qquad \Longrightarrow \quad U M U^{-1} = \pm M$$

(Signs may be different)

What form do the symmetries U take?

Symmetries of Maxwell Operator in Matter

Product structure of $M = W^{-1}$ Rot:

$$\begin{array}{c}
 U \operatorname{Rot} U^{-1} = \pm \operatorname{Rot} \\
 U W U^{-1} = \pm W
 \end{array}
 \qquad \Longrightarrow \quad U M U^{-1} = \pm M$$

(Signs may be different)

What form do the symmetries U take?

Symmetries of the Free Maxwell Operator Rot

$$\mathsf{Rot} = \begin{pmatrix} 0 & +\mathsf{i}\nabla^{\times} \\ -\mathsf{i}\nabla^{\times} & 0 \end{pmatrix} = -\sigma_2 \otimes \nabla^{\times}$$

Symmetries

For n = 1, 2, 3

- ① Complex conjugation C (antilinear)
- 2 $J_n = \sigma_n \otimes id$ (linear)
- $T_n = J_n C$ (antilinear)

Connection to symmetries in ordinary materials: $J = J_{3}$, $T = T_{3}$

$$\mathsf{Rot} = \begin{pmatrix} 0 & +\mathsf{i}\nabla^{\times} \\ -\mathsf{i}\nabla^{\times} & 0 \end{pmatrix} = -\sigma_2 \otimes \nabla^{\times}$$

Symmetries

For n = 1, 2, 3

- ① Complex conjugation C (antilinear)
- 2 $J_n = \sigma_n \otimes id$ (linear)
- 3 $T_n = J_n C$ (antilinear)

$$\mathsf{Rot} = \begin{pmatrix} 0 & +\mathsf{i}\nabla^{\times} \\ -\mathsf{i}\nabla^{\times} & 0 \end{pmatrix} = -\sigma_2 \otimes \nabla^{\times}$$

Symmetries

For n = 1, 2, 3

- ① Complex conjugation C (antilinear)
- 2 $J_n = \sigma_n \otimes id$ (linear)
- $T_n = J_n C$ (antilinear)

$$\mathsf{Rot} = \begin{pmatrix} 0 & +\mathsf{i}\nabla^{\times} \\ -\mathsf{i}\nabla^{\times} & 0 \end{pmatrix} = -\sigma_2 \otimes \nabla^{\times}$$

Symmetries

For n = 1, 2, 3

- ① Complex conjugation C (antilinear)
- 2 $J_n = \sigma_n \otimes id$ (linear)
- $\mathfrak{I}_n = J_n C$ (antilinear)

$$\mathsf{Rot} = \begin{pmatrix} 0 & +\mathsf{i}\nabla^{\times} \\ -\mathsf{i}\nabla^{\times} & 0 \end{pmatrix} = -\sigma_2 \otimes \nabla^{\times}$$

Symmetries

For n = 1, 2, 3

- ① Complex conjugation C (antilinear)
- 2 $J_n = \sigma_n \otimes id$ (linear)
- $\mathfrak{I}_n = J_n C$ (antilinear)

$$\mathsf{Rot} = \begin{pmatrix} 0 & +\mathsf{i}\nabla^{\times} \\ -\mathsf{i}\nabla^{\times} & 0 \end{pmatrix} = -\sigma_2 \otimes \nabla^{\times}$$

Action of symmetries on Rot

- ① $C \operatorname{Rot} C = -\operatorname{Rot}$
- ② $J_n \operatorname{Rot} J_n^{-1} = -\operatorname{Rot}, n = 1, 3$ $J_2 \operatorname{Rot} J_2^{-1} = +\operatorname{Rot}$
- $T_n \operatorname{Rot} T_n^{-1} = +\operatorname{Rot}, n = 1, 3$ $T_2 \operatorname{Rot} T_2^{-1} = -\operatorname{Rot}$

Symmetries of Maxwell Operator in Matter

Product structure of $M = W^{-1}$ Rot:

$$\left. \begin{array}{l} U\operatorname{Rot} U^{-1} = \pm \operatorname{Rot} \\ UWU^{-1} = \pm W \end{array} \right\} \implies UM_W U^{-1} = \pm M_W$$

(Signs may be different)

Symmetries
$$U = T_n, C, J_n, n = 1, 2, 3$$

realized			
A	none		
AIII	$J_1 \equiv \chi$	$J_2 \equiv \chi$	$J_3\equiv \chi$
Al	$T_1 \equiv +TR$	$T_3 \equiv +\text{TR}$	$C \equiv +TR$
All	$T_2 \equiv -TR$		
D	$T_1 \equiv +PH$	$T_3 \equiv +PH$	$C \equiv +PH$
С	$T_2 \equiv -PH$		

realized			
BDI	$T_1 \equiv +TR$ $C \equiv +PH$	$C \equiv +TR$ $T_1 \equiv +PH$	$T_3 \equiv +TR$ $C \equiv +PH$
BDI	$C \equiv +TR$ $T_3 \equiv +PH$	$T_3 \equiv +TR$ $T_1 \equiv +PH$	$T_1 \equiv +\text{TR}$ $T_3 \equiv +\text{PH}$
DIII	$T_2 \equiv -TR \ T_1 \equiv +PH$	$T_2 \equiv -TR$ $T_3 \equiv +PH$	$T_2 \equiv -TR$ $C \equiv +PH$
CI	$T_1 \equiv +TR \ T_2 \equiv -PH$	$T_3 \equiv +\text{TR}$ $T_2 \equiv -\text{PH}$	$C \equiv +TR$ $T_2 \equiv -PH$

Symmetries present	CAZ class	$arepsilon$, μ	χ	Realized?
none	А	\mathbb{C}	\mathbb{C}	Yes
<i>T</i> ₃	Al	\mathbb{R}	iℝ	Yes
J_3	AIII	\mathbb{C}	0	Yes
С	D	\mathbb{R}	\mathbb{R}	Unknown
C, J ₃ , T ₃	BDI	\mathbb{R}	0	Yes
J_1, T_2, T_3	CI	\mathbb{R} $\varepsilon = \mu$	$i\mathbb{R}$ $\chi^* = \chi$	Yes

Symmetries present	CAZ class	Reduced <i>K</i> -group in dimension			
		d=1	d=2	d=3	d=4
none	Α	0	\mathbb{Z}	\mathbb{Z}^3	\mathbb{Z}^7
$T_3 \equiv +TR$	Al	0	0	0	\mathbb{Z}
$J_3 \equiv \chi$	AIII	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^4	\mathbb{Z}^8
$C \equiv +PH$	D	\mathbb{Z}_2	$\mathbb{Z}_2^2\oplus\mathbb{Z}$	$\mathbb{Z}_2^3 \oplus \mathbb{Z}^3$	$\mathbb{Z}_2^4 \oplus \mathbb{Z}^6$
$J_3 \equiv \chi$ $C \equiv +PH$	BDI	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}^4
$T_2 \equiv -PH$ $T_3 \equiv +TR$	CI	0	0	\mathbb{Z}	\mathbb{Z}^4

Part 4 Effective Models

- ① Obtain band spectrum by solving a second-order equation for electric/magnetic field only, e. g. $M(k)_{r_r}^2 \varphi_r^E(k) = \lambda_r(k)^2 \varphi_r^E(k)$
- 2 Pick a family of bands, e. g. with a conical intersection (A_+, Y_1)
- Use a graphene-type tight-binding model to understand light propagation for states located near intersection

- ① Obtain band spectrum by solving a second-order equation for electric/magnetic field only, e. g. $M(k)_{FF}^2 \varphi_n^E(k) = \lambda_n(k)^2 \varphi_n^E(k)$
- ② Pick a family of bands, e. g. with a conical intersection (A_+, Y_1)
- Use a graphene-type tight-binding model to understand light propagation for states located near intersection

- ① Obtain band spectrum by solving a second-order equation for electric/magnetic field only, e. g. $M(k)_{FF}^2 \varphi_n^E(k) = \lambda_n(k)^2 \varphi_n^E(k)$
- 2 Pick a family of bands, e. g. with a conical intersection (A_+, Y_1)
- 3 Use a graphene-type tight-binding model to understand light

- ① Obtain band spectrum by solving a second-order equation for electric/magnetic field only, e. g. $M(k)_{FF}^2 \varphi_n^E(k) = \lambda_n(k)^2 \varphi_n^E(k)$
- 2 Pick a family of bands, e. g. with a conical intersection (A_+, Y_1)
- Use a graphene-type tight-binding model to understand light propagation for states located near intersection

Caution!

Procedure yields tight-binding operator $M_{\rm eff}$

Problems

- ① Connection of M_{eff} to dynamics?
- 2 Nature of symmetries?
- 3 Correct notion of Berry connection?

Caution!

Procedure yields tight-binding operator M_{eff}

Problems

- ① Connection of M_{eff} to dynamics?
- 2 Nature of symmetries?
- 3 Correct notion of Berry connection?

Assume $\chi = 0$ (no bianisotropy).

$$\begin{aligned} & \text{first order} & & \text{second order} \\ & & \mathrm{i}\partial_t \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \mathbf{M} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} & \iff & \left(\partial_t^2 + \mathbf{M}^2\right) \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0 \\ & \mathbf{M} = \begin{pmatrix} 0 & +\mathrm{i}\,\varepsilon^{-1}\,\nabla^\times \\ -\mathrm{i}\,\mu^{-1}\,\nabla^\times & 0 \end{pmatrix} & \implies & \mathbf{M}^2 = \begin{pmatrix} \varepsilon^{-1}\nabla^\times\mu^{-1}\nabla^\times \\ 0 & \mu^{-1}\nabla^\times\varepsilon^{-1}\nabla^\times \end{pmatrix} \\ & & \mathbf{M}(k)\varphi_n(k) = \omega_n(k)\,\varphi_n(k) & \implies & \mathbf{M}(k)^2\,\varphi_n(k) = \left(\omega_n(k)\right)^2\varphi_n(k) \end{aligned}$$

first order second order
$$i\partial_t \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = M \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \iff \left(\partial_t^2 + M^2 \right) \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0$$

$$M \text{ block-offdiagonal} \implies M^2 \text{ block-diagonal}$$

$$M(k)\varphi_n(k) = \omega_n(k) \varphi_n(k) \implies M(k)^2 \varphi_n(k) = \left(\omega_n(k) \right)^2 \varphi_n(k)$$

first order second order $i\partial_t \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = M \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \iff \begin{cases} (\partial_t^2 + M_{EE}^2) \mathbf{E} = 0 \\ (\partial_r^2 + M_{LH}^2) \mathbf{H} = 0 \end{cases}$ $\mathbf{M} = \begin{pmatrix} 0 & +\mathrm{i}\, \varepsilon^{-1}\, \nabla^{\times} \\ -\mathrm{i}\, \mu^{-1}\, \nabla^{\times} & 0 \end{pmatrix} \quad \Longrightarrow \quad \mathbf{M}^2 = \begin{pmatrix} \mathbf{M}_{\mathrm{EE}}^2 & 0 \\ 0 & \mathbf{M}_{\mathrm{ee}}^2 \end{pmatrix}$ $M(k)\varphi_n(k) = \omega_n(k)\varphi_n(k) \implies M(k)^2\varphi_n(k) = (\omega_n(k))^2\varphi_n(k)$

first order second order $i\partial_t \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = M \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \iff \begin{cases} (\partial_t^2 + M_{EE}^2) \mathbf{E} = 0 \\ (\partial_r^2 + M_{LH}^2) \mathbf{H} = 0 \end{cases}$ $\mathbf{M} = \begin{pmatrix} 0 & +\mathrm{i}\, \varepsilon^{-1}\, \nabla^{\times} \\ -\mathrm{i}\, \mu^{-1}\, \nabla^{\times} & 0 \end{pmatrix} \quad \Longrightarrow \quad \mathbf{M}^2 = \begin{pmatrix} \mathbf{M}_{\mathrm{EE}}^2 & 0 \\ 0 & \mathbf{M}_{\mathrm{BB}}^2 \end{pmatrix}$ $M(k)\varphi_n(k) = \omega_n(k)\varphi_n(k) \implies M(k)^2 \varphi_n(k) = (\omega_n(k))^2 \varphi_n(k)$

$\begin{aligned} & \text{first order} & & \text{second order} \\ & & \mathrm{i}\partial_t \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \mathbf{M} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} & \iff & \begin{cases} \left(\partial_t^2 + M_{EE}^2 \right) \mathbf{E} = 0 \\ \left(\partial_t^2 + M_{HH}^2 \right) \mathbf{H} = 0 \end{cases} \\ & M = \begin{pmatrix} 0 & +\mathrm{i}\,\varepsilon^{-1}\,\nabla^\times \\ -\mathrm{i}\,\mu^{-1}\,\nabla^\times & 0 \end{pmatrix} & \implies & M^2 = \begin{pmatrix} M_{EE}^2 & 0 \\ 0 & M_{HH}^2 \end{pmatrix} \\ & M(k)\varphi_n(k) = \omega_n(k)\,\varphi_n(k) & \implies & M(k)_{FF}^2\,\varphi_n^E(k) = \left(\omega_n(k) \right)^2\,\varphi_n^E(k) \end{aligned}$

first order second order $i\partial_t \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = M \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \iff \begin{cases} \left(\partial_t^2 + M_{EE}^2 \right) \mathbf{E} = 0 \\ \left(\partial_t^2 + M_{LH}^2 \right) \mathbf{H} = 0 \end{cases}$ $\mathbf{M} = \begin{pmatrix} 0 & +\mathrm{i}\,\varepsilon^{-1}\,\nabla^\times \\ -\mathrm{i}\,\mu^{-1}\,\nabla^\times & 0 \end{pmatrix} \quad \Longrightarrow \quad \mathbf{M}^2 = \begin{pmatrix} \mathbf{M}_{\mathrm{EE}}^2 & 0 \\ 0 & \mathbf{M}_{\mathrm{CC}}^2 \end{pmatrix}$ $M(k)\varphi_n(k) = \omega_n(k)\varphi_n(k) \implies M(k)_{FF}^2 \varphi_n^E(k) = (\omega_n(k))^2 \varphi_n^E(k)$

Compute frequency bands starting from

$$\mathit{M}(\mathit{k})_{\mathit{EE}}^{2}\varphi_\mathit{n}^{\mathit{E}}(\mathit{k}) = \left(\lambda_\mathit{n}(\mathit{k})\right)^{2}\varphi_\mathit{n}^{\mathit{E}}(\mathit{k})$$

Assumption $\lambda_n(k) \geq 0 \Longrightarrow \text{yields } |\omega| \text{ spectrum}$

→ Sign important for dynamics

$$0 = \left(\partial_t^2 + M(k)^2\right) \binom{\mathbf{E}}{\mathbf{H}} = \left(\partial_t + \mathrm{i}\,M(k)\right) \left(\partial_t - \mathrm{i}\,M(k)\right) \binom{\mathbf{E}}{\mathbf{H}}$$

Compute frequency bands starting from

$$M(\mathbf{k})_{\mathrm{EE}}^{2}\varphi_{n}^{\mathrm{E}}(\mathbf{k}) = \left(\lambda_{n}(\mathbf{k})\right)^{2}\varphi_{n}^{\mathrm{E}}(\mathbf{k})$$

Assumption $\lambda_n(k) \geq 0 \Longrightarrow \text{yields } |\omega| \text{ spectrum}$

→ Sign important for dynamics!

$$0 = \left(\partial_t^2 + M(k)^2\right) {\text{E} \choose {\textbf{H}}} = \left(\partial_t + \mathrm{i}\, M(k)\right) \left(\partial_t - \mathrm{i}\, M(k)\right) {\text{E} \choose {\textbf{H}}}$$

Compute frequency bands starting from

$$\mathbf{M}(\mathbf{k})_{\mathrm{EE}}^{2} \varphi_{\mathrm{n}}^{\mathrm{E}}(\mathbf{k}) = \left(\lambda_{\mathrm{n}}(\mathbf{k})\right)^{2} \varphi_{\mathrm{n}}^{\mathrm{E}}(\mathbf{k})$$

Assumption $\lambda_n(k) \geq 0 \Longrightarrow \text{yields } |\omega| \text{ spectrum}$

→ Sign important for dynamics!

$$0 = \left(\partial_t^2 + M(k)^2\right) \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \left(\partial_t + \mathrm{i}\,M(k)\right) \left(\partial_t - \mathrm{i}\,M(k)\right) \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

First-order formulation $M(k)\varphi_n(k) = \omega_n(k)\varphi_n(k)$

Second-order formulation $M(\mathbf{k})^2 \varphi_n(\mathbf{k}) = |\omega_n(\mathbf{k})|^2 \varphi_n(\mathbf{k})$

ω spectrum vs. $|\omega|$ spectrum

- Points X_i and Y_i are artificial band crossings
- No graphene-like physics
 eigenfunctions well-behaved at artificial crossings

ω spectrum vs. $|\omega|$ spectrum

- Points X_i and Y_i are artificial band crossings
- No graphene-like physics
 → eigenfunctions well-behaved at artificial crossings

Classification of (anti-)unitary U with $U^2 = \pm id$ with

$$UM(k)^2 U^{-1} = M(\pm k)^2$$

$$\begin{array}{c} CM(k) \ C = -M(-k) \\ \Rightarrow CM(k)^2 \ C = +M(-k)^2 \end{array} \quad \text{vs.} \quad \begin{cases} TM(k) \ T = +M(-k) \\ \Rightarrow TM(k)^2 \ T = +M(-k)^2 \end{cases}$$

- ⇒ No way to distinguish PH and TR symmetry Ditto for chiral vs. proper symmetry
- ⇒ CAZ classification **impossible** in second-order framework!

Classification of (anti-)unitary U with $U^2=\pm \mathrm{id}$ with

$$UM(k)^2 U^{-1} = M(\pm k)^2$$

$$\begin{array}{l}
CM(k) C = -M(-k) \\
\Rightarrow CM(k)^2 C = +M(-k)^2
\end{array}$$
vs.
$$\begin{cases}
TM(k) T = +M(-k) \\
\Rightarrow TM(k)^2 T = +M(-k)^2
\end{cases}$$

- ⇒ No way to distinguish PH and TR symmetry!
 Ditto for chiral vs. proper symmetry
- ⇒ CAZ classification **impossible** in second-order framework!

Classification of (anti-)unitary U with $U^2 = \pm id$ with

$$UM(\mathbf{k})^2 U^{-1} = M(\pm \mathbf{k})^2$$

$$\begin{array}{l}
CM(k) C = -M(-k) \\
\Rightarrow CM(k)^2 C = +M(-k)^2
\end{array}$$
vs.
$$\begin{cases}
TM(k) T = +M(-k) \\
\Rightarrow TM(k)^2 T = +M(-k)^2
\end{cases}$$

- \Rightarrow **No way** to distinguish PH and TR symmetry!

Classification of (anti-)unitary U with $U^2 = \pm id$ with

$$UM(k)^2 U^{-1} = M(\pm k)^2$$

$$\begin{array}{l}
CM(k) C = -M(-k) \\
\Rightarrow CM(k)^2 C = +M(-k)^2
\end{array}$$
vs.
$$\begin{cases}
TM(k) T = +M(-k) \\
\Rightarrow TM(k)^2 T = +M(-k)^2
\end{cases}$$

- ⇒ No way to distinguish PH and TR symmetry! Ditto for chiral vs. proper symmetry
- ⇒ CAZ classification **impossible** in second-order framework!

Symmetries

Classification of (anti-)unitary U with $U^2 = \pm id$ with

$$UM(k)^2 U^{-1} = M(\pm k)^2$$

in Cartan-Altland-Zirnbauer scheme, e. g.

$$\begin{array}{l}
CM(k) C = -M(-k) \\
\Rightarrow CM(k)^2 C = +M(-k)^2
\end{array}$$
vs.
$$\begin{cases}
TM(k) T = +M(-k) \\
\Rightarrow TM(k)^2 T = +M(-k)^2
\end{cases}$$

- ⇒ No way to distinguish PH and TR symmetry! Ditto for chiral vs. proper symmetry
- ⇒ CAZ classification **impossible** in second-order framework!

Proper definition of the Berry Connection

$$\mathcal{A}(k) = i \left\langle \varphi_n(k), \nabla_k \varphi_n(k) \right\rangle_{w} = i \left\langle \varphi_n(k), W \nabla_k \varphi_n(k) \right\rangle$$
$$= i \left\langle \varphi_n^{E}(k), \varepsilon \nabla_k \varphi_n(k) \right\rangle + i \left\langle \varphi_n^{H}(k), \mu \nabla_k \varphi_n^{H}(k) \right\rangle$$

- Berry connection sometimes computed using only $\varphi_n^E(k)$
- However: $\|\mathbf{E}(t)\|_{\varepsilon}^2 = \langle \mathbf{E}(t), \varepsilon \mathbf{E}(t) \rangle$ not conserved quantity!
- $\Rightarrow \mathcal{A}^E(k) = i \langle \varphi_n^E(k), \varepsilon \nabla_k \varphi_n^E(k) \rangle$ not a connection
- Magnetic field necessary to compute Berry connection!
- Same arguments hold for φ_n^H .

Proper definition of the Berry Connection

$$\mathcal{A}(k) = i \left\langle \varphi_n(k), \nabla_k \varphi_n(k) \right\rangle_{w} = i \left\langle \varphi_n(k), W \nabla_k \varphi_n(k) \right\rangle$$
$$= i \left\langle \varphi_n^{E}(k), \varepsilon \nabla_k \varphi_n(k) \right\rangle + i \left\langle \varphi_n^{H}(k), \mu \nabla_k \varphi_n^{H}(k) \right\rangle$$

- Berry connection sometimes computed using only $\varphi_n^E(k)$
- However: $\|\mathbf{E}(t)\|_{\varepsilon}^2 = \langle \mathbf{E}(t), \varepsilon \mathbf{E}(t) \rangle$ not conserved quantity!
- $\Rightarrow \mathcal{A}^{E}(k) = i \langle \varphi_{n}^{E}(k), \varepsilon \nabla_{k} \varphi_{n}^{E}(k) \rangle$ not a connection
- Magnetic field necessary to compute Berry connection!
- Same arguments hold for φ_n^H

Proper definition of the Berry Connection

$$\mathcal{A}(k) = i \left\langle \varphi_n(k), \nabla_k \varphi_n(k) \right\rangle_{w} = i \left\langle \varphi_n(k), W \nabla_k \varphi_n(k) \right\rangle$$
$$= i \left\langle \varphi_n^{E}(k), \varepsilon \nabla_k \varphi_n(k) \right\rangle + i \left\langle \varphi_n^{H}(k), \mu \nabla_k \varphi_n^{H}(k) \right\rangle$$

- Berry connection sometimes computed using only $\varphi_n^E(k)$
- However: $\|\mathbf{E}(t)\|_{\varepsilon}^2 = \langle \mathbf{E}(t), \varepsilon \mathbf{E}(t) \rangle$ not conserved quantity!
- $\Rightarrow \mathcal{A}^{E}(k) = i \langle \varphi_{n}^{E}(k), \varepsilon \nabla_{k} \varphi_{n}^{E}(k) \rangle$ not a connection
- Magnetic field necessary to compute Berry connection!
- Same arguments hold for φ_n^H .

Effective Tight-Binding Models

Goal: Find

- 1 an orthogonal projection P and
- a simpler effective operator M_{eff} (equivalent to a tight-binding operator)

so that for states from ran P we have

$$e^{-itM}P = e^{-itM_{eff}}P + error.$$

Effective Models Should Retain All Symmetries!

For topological effects: M and M_{eff} which enter

$$e^{-itM}P = e^{-itM_{eff}}P + error$$

should be in the same CAZ class

- M and M_{eff} possess the same number and type of symmetries
- Due to misclassification of PhCs in earlier works: disregarded in the literature

Effective Models Should Retain All Symmetries!

For topological effects: M and Meff which enter

$$e^{-itM}P = e^{-itM_{eff}}P + error$$

should be in the same CAZ class

- M and M_{eff} possess the same number and type of symmetries
- Due to misclassification of PhCs in earlier works: disregarded in the literature

Effective Models Should Retain All Symmetries!

For topological effects: M and M_{eff} which enter

$$e^{-itM}P = e^{-itM_{eff}}P + error$$

should be in the same CAZ class

- M and M_{eff} possess the same number and type of symmetries
- Due to misclassification of PhCs in earlier works: disregarded in the literature

Effective Dynamics

- CMP paper explains how to compute effective tight-binding operators in the presence of adiabatic perturbations.
- 2015 preprint derives correct ray optics equations and explains how they intertwine with C symmetry.

Effective Dynamics

- CMP paper explains how to compute effective tight-binding operators in the presence of adiabatic perturbations.
- 2015 preprint derives correct ray optics equations and explains how they intertwine with C symmetry.

Conclusion

Part 1

Schrödinger Formalism of Electromagnetism

• dynamical Maxwell equations \iff $\mathrm{i}\partial_t\Psi=M\Psi$ with $M^*=M$ \rightsquigarrow adaptation of quantum mechanical techniques to electromagnetism

Part 2

Primer on Topological Insulators

- Rests on $i\partial_t \Psi = H\Psi$
- Topological classes of $H \longleftrightarrow$ symmetries of H
- 3 types of symmetries (\pm TR, \pm PH, χ)
- Phases inside of topological classes
- Bulk-edge correspondences

Part 1

Schrödinger Formalism of Electromagnetism

• dynamical Maxwell equations \iff $i\partial_t \Psi = M \Psi$ with $M^* = M$ \iff adaptation of quantum mechanical techniques to electromagnetism

Part 2

Primer on Topological Insulators

- Rests on $i\partial_t \Psi = H\Psi$
- Topological classes of $H \longleftrightarrow$ symmetries of H
- 3 types of symmetries (\pm TR, \pm PH, χ)
- Phases inside of topological classes
- Bulk-edge correspondences

Part 3

Photonic Topological Insulators

- Schrödinger formalism of electromagnetism
 → application of classification scheme for TIs
- Complete classification table in publication
- Ordinary material in class BDI (3 symmetries)
 - → different from time-reversal-invariant quantum systems!
 - → each symmetry can be broken individually

Part 4

Effective light dynamics

- For topological effects: M and $M_{\rm eff}$ of same topological class
- For adiabatic perturbations: explicit form of corrections available
- Ray optics equations also available

Part 3

Photonic Topological Insulators

- Schrödinger formalism of electromagnetism
 → application of classification scheme for TIs
- Complete classification table in publication
- Ordinary material in class BDI (3 symmetries)
 - → different from time-reversal-invariant quantum systems!
 - → each symmetry can be broken individually

Part 4

Effective light dynamics

- \bullet For topological effects: M and $M_{\rm eff}$ of same topological class
- For adiabatic perturbations: explicit form of corrections available
- Ray optics equations also available

- Better understanding of topological classes BDI and AllI
 → also relevant for topological superconductors
- Effective dynamics for classes BDI, D and AIII --- edge currents
- Bulk-edge correspondences
 photonic analog of transverse conductivity?
- Effects of non-linearity ~> topological solitons?
- Persistence of edge currents in presence of random impurities
- Periodic waveguide arrays

- Better understanding of topological classes BDI and AIII
 also relevant for topological superconductors
- Effective dynamics for classes BDI, D and AIII → edge currents
- Bulk-edge correspondences
 photonic analog of transverse conductivity?
- Effects of non-linearity ~> topological solitons?
- Persistence of edge currents in presence of random impurities
- Periodic waveguide arrays

- Better understanding of topological classes BDI and AIII
 also relevant for topological superconductors
- Effective dynamics for classes BDI, D and AIII → edge currents
- Bulk-edge correspondences
 → photonic analog of transverse conductivity?
- Effects of non-linearity → topological solitons?
- Persistence of edge currents in presence of random impurities
- Periodic waveguide arrays

- Better understanding of topological classes BDI and AIII
 also relevant for topological superconductors
- Effective dynamics for classes BDI, D and AIII → edge currents
- Bulk-edge correspondences

 ⇒ photonic analog of transverse conductivity?
- Effects of non-linearity ~> topological solitons?
- Persistence of edge currents in presence of random impurities
- Periodic waveguide arrays

- Better understanding of topological classes BDI and AllI
 also relevant for topological superconductors
- Effective dynamics for classes BDI, D and AIII → edge currents
- Bulk-edge correspondences

 ⇒ photonic analog of transverse conductivity?
- Effects of non-linearity ~> topological solitons?
- Persistence of edge currents in presence of random impurities
- Periodic waveguide arrays

Periodic Waveguide Arrays

- Very interesting experiments by Mikael Rechtsman et al
- Backscattering-free unidirectional boundary currents measured
- Ordinary material (silica) ⇒ class BDI
- Experiments explained by use of effective models

Periodic Waveguide Arrays

- Very interesting experiments by Mikael Rechtsman et al
- Backscattering-free unidirectional boundary currents measured
- Ordinary material (silica) ⇒ class BDI
- Experiments explained by use of effective models

Periodic Waveguide Arrays

- Very interesting experiments by Mikael Rechtsman et al
- Backscattering-free unidirectional boundary currents measured
- Ordinary material (silica) ⇒ class BDI
- Experiments explained by use of effective models

Thank you for your attention!

- M. S. Birman and M. Z. Solomyak. L²-Theory of the Maxwell operator in arbitrary domains. Uspekhi Mat. Nauk 42.6, 1987, pp. 61–76.
- J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Maede. Photonic Crystals. Molding the Flow of Light. Princeton University Press, 2008.
- P. Kuchment. Mathematical Modelling in Optical Science.
 Chapter 7. The Mathematics of Photonic Crystals. pp. 207–272,
 Society for Industrial and Applied Mathematics, 2001.

- M. Onoda, S. Murakami and N. Nagaosa. Geometrical aspects in optical wave-packet dynamics. Phys. Rev. E. 74, 066610, 2010.
- S. Raghu and F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834, 2008.
- S. Raghu and F. D. M. Haldane. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 100, 013904, 2008.
- Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic.
 Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–5, 2009.

- M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit. *Photonic Floquet topological insulators*. Nature 496, 196–200, 2013.
- M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z. Chen, A. Szameit, and M. Segev. *Topological Creation and Destruction of Edge States in Photonic Graphene*. Phys. Rev. Lett. 111, 103901, 2013.

- Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, A. Szameit, N. Malkova, Z. Chen, and M. Segev. Observation of dispersion-free edge states in honeycomb photonic lattices. In: Conference on Lasers and Electro-Optics 2012. Op-tical Society of America, 2012, QF2H.6.
- Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, J. M. Zeuner,
 S. Nolte, Y. Lumer, N. Malkova, J. Xu, A. Szameit, Z. Chen, and M. Segev. Observation of unconventional edge states in "photonic graphene". Nature Materials 13, 57–62, 2014.

Part 5 **Encore**

Mathematically irrelevant symmetries, e.g.

- ① $T_n M_w T_n = +M_w$ (linear, commuting)
- 2 Parity $(P\Psi)(x) = \Psi(-x)$ (linear, anticommuting)

Mathematically irrelevant symmetries, e.g.

- ① $T_n M_w T_n = +M_w$ (linear, commuting)
- 2 Parity $(P\Psi)(x) = \Psi(-x)$ (linear, anticommuting)

Physically irrelevant symmetries

Symmetry leads to unphysical conditions on weights, e. g.

$$CWC = -W \Leftrightarrow CM_wC = +M_w$$

implies $\varepsilon \in i\mathbb{R}$, $\mu \in i\mathbb{R}$, $\chi \in i\mathbb{R}$ (keep in mind $\varepsilon = \varepsilon^*$ and $\mu = \mu^*$)

Physically irrelevant symmetries

Symmetry leads to unphysical conditions on weights, e. g.

$$CWC = -W \Leftrightarrow CM_wC = +M_w$$

implies $\varepsilon \in i\mathbb{R}$, $\mu \in i\mathbb{R}$, $\chi \in i\mathbb{R}$ (keep in mind $\varepsilon = \varepsilon^*$ and $\mu = \mu^*$)