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and Their Effective Dynamics
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Talk Based on

Collaboration with Giuseppe De Nittis

o On the Role of Symmetries in the Theory of Photonic Crystals
Annals of Physics 350, pp. 568-587, 2014

o Effective Light Dynamics in Perturbed Photonic Crystals
Comm. Math. Phys. 332, issue 1, pp. 221-260, 2014

o Derivation of Ray Optics Equations in Photonic Crystals Via a
Semiclassical Limit
arxiv:1502.07235, submitted for publication, 2015
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Periodic Light Conductors

Photonic Crystals

Periodic Waveguide Arrays

periodic structure = peculiar light conduction properties

natural photonic crystals: gem stones, beetle shells, butterfly wings, chameleon
artificial PLCs can be engineered arbitrarily and inexpensively

“band structure engineering”

~~ photonic band gaps, slow light, low-dispersion materials

Encore
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A Novel Class of Materials: Photonic Topological Insulators

Theory Experiment

Predicted by ... and realized in

e Onoda, Murakami and Nagaosa (2004) e 2d photonic crystals for microwaves
e Raghu and Haldane (2005) by Joannopoulos, Soljaci¢ et al (2009)

e periodic waveguide arrays for light at
optical frequencies by Rechtsman,
Szameit et al (2013)
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A Novel Class of Materials: Photonic Topological Insulators

Encore
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Trends in Research on Photonics

@ Realize many effects for light at optical frequencies.
~~ Necessary for integration with electronic devices
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Trends in Research on Photonics

@ Realize many effects for light at optical frequencies.

@ Include topological effects.
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Trends in Research on Photonics

@ Realize many effects for light at optical frequencies.

@ Include topological effects.

@ Rely as much as possible on ordinary materials.
~» Ordinary materials in non-trivial topological class!
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Trends in Research on Photonics

Realize many effects for light at optical frequencies.

Include topological effects.
Rely as much as possible on ordinary materials.
~» Ordinary materials in non-trivial topological class!

Include non-linear effects.
~» Should be particularly strong in
topological edge modes (remain localized!)

Encore
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Trends in Research on Photonics

@ Include topological effects.

@ Rely as much as possible on ordinary materials.
~» Ordinary materials in non-trivial topological class!
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Part 1
Schrodinger Formalism of Light

Part 2
A Primer on Topological Insulators

Part 3
Photonic Topological Insulators

Part 4
Effective Models

Conclusion

Encore
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Part 1
Schrodinger Formalism of Light



Intro  Schrodinger Formalism  Topological Insulators ~ Photonic Topological Insulators  Effective Models ~ Conclusion ~ Encore

This is only a mathematical procedure,
allows to adapt many techniques

initially developed for quantum mechanics
to classical electromagnetism.
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Photonic Cyrstals

l Assumption (Material weights)

J @ w* = W(lossless)

@ 0<c1<W<C1
(excludes negative index mat.)

@ W frequency-independent
(response instantaneous)

@ W periodic wrt latticeT' ~ 73
Johnson & Joannopoulos (2004)
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Maxwell equations

Dynamical equations

(o ) e (8)=(528)

(V-(5E+xH))>=O

Absence of sources

Johnson & Joannopoulos (2004)

V. (X*E+ pH
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Maxwell equations

Dynamical equations

(o ) e (8)=(528)

div. 0 e x)\ (E\ _ 0
0 div) \x* u -
Johnson & Joannopoulos (2004)

H

Absence of sources
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Schroédinger Formalism of the Maxwell Equations

@ Field energy

oL (i) (G 20) )

@ Dynamical equations

()

@ Nosources

Encore
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Schroédinger Formalism of the Maxwell Equations

@ Field energy
E(E,H) = E(E(t), H(t))

@ Dynamical equations

(3 a () ()
(3 &) (C ) @)

9
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@ No sources

Encore
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Schroédinger Formalism of the Maxwell Equations

@ Field energy

oL (i) (G 20) )

@ Dynamical equations

()

@ Nosources

Encore
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) < L2(R?, CY) with energy norm

o o (5) G 32 52
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) € L2(R3, C®) with energy norm

&, = 2£(E.H)
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) € L2,(R3, C°) with energy scalar product

((E,H), (E,H)),, = ((E,H),W(EH)), e o)
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) € L2(IR3, C°) with energy scalar product
((E'H), (E,H)),, = ((E',H),W(E,H)) > s o)

@ Dynamical equations ~» »Schrodinger equation«

e x\ 9 (E\_ (~VxxH
X" wu) ot \H) \+VxxE

Encore
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) € L2(R3, C®) with energy scalar product
((E,H),(E,H)), = ((E,H),W(E,H)) s co)

@ Dynamical equations ~~ »Schrédinger equation«

2060 (e T

Encore
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) € L2(R3, C®) with energy scalar product

<(E/a H/)v (E, H)>W = <(E/7 H/)> W(E, H)>L2(R3,(C6)

@ Dynamical equations ~ »Schréodinger equation«

) e V)6

=V

=M

Encore
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) € L2(IR3, C°) with energy scalar product
((E,H), (E,H)), = ((E,H),W(E H)),ps oo
@ Dynamical equations ~» »Schrodinger equation«

i20 = MP
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) € L2(R3, C®) with energy scalar product

<(E/7 H/)v (E, H)>W = <(E/7 H/)> W(E, H)>L2(R3,(C6)

@ Dynamical equations ~ »Schrédinger equation«

) e V)6

=V

=M
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) € L2(R3, C®) with energy scalar product
((E,H),(E.H)), = ((E,H),W(E.H)) s oo
@ Dynamical equations ~ »Schrédinger equation«

) () o )6

~~

=0 =M

@ No sources

Encore
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Schroédinger Formalism of the Maxwell Equations

@ Field energy (E,H) € L2(R3, C®) with energy scalar product

<(E/v H/)v (E, H)>W = <(E/v H/)a W(E, H)>L2(R37C6)

@ Dynamical equations ~ »Schréodinger equation«

) e V)6

—v
@ No sources

Jy =G,

=M

G = gradient fields

Encore
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The Maxwell Operator

m= (o @) (e V)
= W ! Rot
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The Maxwell Operator

u= (558 (e )
= W~ Rot

Conclusion

Encore
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The Maxwell Operator

m= (o @) (e V)
= W ! Rot

M = M* hermitian on weighted Hilbert space

(U, M®) = (U, WW 'Rotd) = (Rotl, I')

= (WM¥, D) = (MU, WD) = (MP, D)



Intro

M = M* hermitian on weighted Hilbert space

= e—il’M

Schrédinger Formalism

Topological Insulators

Photonic Topological Insulators

Effective Models
The Maxwell Operator

Conclusion

0

+iV*
—ivV* 0

11(X)

w= () (

= W' Rot

(U,M®) = (U WW 'Rotd) = (Rotl, ¥)

— (WMT, D) = (MU, WD) = (MT, D)

unitary, yields conservation of energy

w

Encore
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Quantum-Light Analogies

Encore

Photonics Quantum mechanics
U= em field wave function
Hilbert space L2(R3,CH) L2(RY)
1o = field energy probability
generator Maxwell operator hamiltonian
dynamics M = M* = WRot H=H"=-A+V
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Quantum-Light Analogies

»A photonic crystal is to light what
a crystalline solid is to an electron.«
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Quantum-Light Analogies

photonic crystals <— crystalline solids

Frequency band picture Ray optics equations

r=4+ViQ+ )\Egeny X k
k=-v,Q
Q(r, k) = modified dispersion

De Nittis & L. (2015): via
~ “photonic semiconductor” “semiclassical” Egorov theorem
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The Frequency Band Picture

52}
M%Mf:/ dk M(k)

B

52}

L) oo %)

D(M(k)) = (H'(T?,C% Ny (k) &G(k) C Lg,(T?, C5)

physical states
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The Frequency Band Picture

52}
M%Mf:/ dk M(k)

B

52}

L) oo %)

D(M(k)) = (H'(T?,C% Ny (k) &G(k) C Lg,(T?, C5)

physical states

M(k) |y = 0 = focus on M(k)|,, k)
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The Frequency Band Picture

Physical bands

M(k)ipn(k) = wn (k) on(k)

Frequency band functions k — wp(k)

Bloch functions k — ¢p(k)

both locally continuous everywhere

both locally analytic away from band crossings
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Effective Models
The Frequency Band Picture
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Part 2
A Primer on Topological Insulators
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Fundamental Notions

Altland-Zirnbauer Classification
of Topological Insulators
The 10-fold way
@ Topological class of H «— Symmetries of H
Phases inside each Labeled by
topological class topological invariants

@ Bulk-edge correspondences

Encore
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Topological Classes

Symmetries of H <— Topological Class of H

@ Relies on id;y) = Hv (Schrodinger equation)

0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +id,

Encore
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Topological Classes

Symmetries of H <— Topological Class of H

O Relieson gy = Hy (Schrodinger equation)
0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +id,
UH(k) U™ = +H(—k) time-reversal symmetry (+TR)
UH(k)U™' = —H(—k) particle-hole (pseudo) symmetry (4-PH)
UH(k)U™! = —H(+k)

Encore
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Topological Classes

Symmetries of H <— Topological Class of H

O Relieson gy = Hy (Schrodinger equation)
0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +id,
UH(k)U™! = +H(—k) time-reversal symmetry (+TR)
UH(k)U™' = —H(—k) particle-hole (pseudo) symmetry (4-PH)
UH(k)U™' = —H(+k) chiral (pseudo) symmetry (x)
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Topological Classes

Symmetries of H <— Topological Class of H

O Relieson gy = Hy (Schrodinger equation)
0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +id,
UH(k)U™' = 4-H(—k) time-reversal symmetry (£TR)
UH(k)U™' = —H(—k) particle-hole (pseudo) symmetry (-=PH)
UH(k)U™' = —H(+k) chiral (pseudo) symmetry (x)

Encore
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Topological Classes

Symmetries of H <— Topological Class of H

O Relieson gy = Hy (Schrodinger equation)
0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +id,
UH(k)U™' = 4H(—k) time-reversal symmetry (£TR)
UH(k)U™' = —H(—k) particle-hole (pseudo) symmetry (4-PH)
UH(k)U~' = —H(+k) chiral (pseudo) symmetry ()

Encore
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Topological Classes

Symmetries of H <— Topological Class of H

O Relieson gy = Hy (Schrodinger equation)
0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +id,
UH(k) U™ = +H(—k) time-reversal symmetry (+TR)
UH(k)U™' = —H(—k) particle-hole (pseudo) symmetry (4-PH)
UH(k)U™' = —H(+k) chiral (pseudo) symmetry (x)

@ 1+5+4=10topological classes

@ Physics crucially depends on topological class.

Encore
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Phases Inside Topological Classes

o Inequivalent phases inside each topological class

@ Continuous, symmetry-preserving deformations of H cannot change
topological phase, unless either
- the energy gap closes (periodic case) or
- a localization-delocalization transition happens (random case)
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Phases Inside Topological Classes

o Inequivalent phases inside each topological class

@ Continuous, symmetry-preserving deformations of H cannot change
topological phase, unless either
- the energy gap closes (periodic case) or
- a localization-delocalization transition happens (random case)

@ Phases labeled by finite set of topological invariants
(e. g. Chern numbers but also others)

o Number and type of topological invariants determined by
- symmetries <= topological class and
- dimension of the system
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Phases Inside Topological Classes

Inequivalent phases inside each topological class

Continuous, symmetry-preserving deformations of H cannot change
topological phase, unless either

- the energy gap closes (periodic case) or

- a localization-delocalization transition happens (random case)

Phases labeled by finite set of topological invariants
(e. g. Chern numbers but also others)

Number and type of topological invariants determined by
- symmetries <= topological class and
- dimension of the system

Notion that Topological Insulator <= Chern number # 0 false!

Encore
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Bulk-Edge Correspondences

@ Properties on the boundary can be inferred from the bulk

o Consists of 3 equalities:

Obuik(t) ~ Touik
Oedge(t) ~ ledge
Toulk = Tedge

Encore
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Bulk-Edge Correspondences

@ Properties on the boundary can be inferred from the bulk

o Consists of 3 equalities:

Toulk = Tedge

@ Number and form depends on the topological class

Encore
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Bulk-Edge Correspondences

@ Properties on the boundary can be inferred from the bulk

o Consists of 3 equalities:

Obuik(t) ~ Touik
Oedge(t) ~ ledge
Toulk = Tedge

@ Number and form depends on the topological class

Encore
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Bulk-Edge Correspondences

@ Properties on the boundary can be inferred from the bulk
o Consists of 3 equalities:
Opuik(t) = Thulk
Oedge(t) ~ ledge
Toulk = Tedge
@ Number and form depends on the topological class

@ Find topological observables

Encore
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Part 3
Photonic Topological Insulators
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Symmetries of Ordinary Materials

e 0 Ree 0
W‘(o u)‘(o Reu>7 e

3 symmetries: UW = WU where U =
@ C: (E,H) — (E,H) complex conjugation

Encore
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Symmetries of Ordinary Materials

e 0 Ree 0
W‘(o u)‘(o Reu>7 e

3 symmetries: UW = WU where U =

@ C: (E,H) — (E,H) complex conjugation
relies on e, 1, x € R, “real fields remain real”

Encore
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Symmetries of Ordinary Materials

e 0 Ree 0
W‘(o u)‘(o Reu>7 e

3 symmetries: UW = WU where U =
@ C: (E,H) — (E,H) complex conjugation

@ J: (E,H) — (E,—H) implements time-reversal

Encore
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Symmetries of Ordinary Materials

e 0 Ree 0
W‘(o u)‘(o Reu>7 e
3 symmetries: UW = WU where U =

@ C: (E,H) — (E,H) complex conjugation

@ J: (E,H) — (E,—H) implements time-reversal
relieson y =0

Encore
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Symmetries of Ordinary Materials

e 0 Ree 0
"= (0 u) - < 0 Reu>7 e
3 symmetries: UW = WU where U =
@ C: (E,H) — (E,H) complex conjugation
@ J: (E,H) — (E,—H) implements time-reversal

@ T=JC: (E,H) — (E,—H) implements time-reversal

Encore
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Symmetries of Ordinary Materials

These 3 symmetries can
be broken separately!
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CAZ Classification of Ordinary PhCs

Symmetry Action Clas:;ﬁed Physical meaning
C CM(k) C = —M(=k) +PH real'states"
remain real
— i — _ implements
e IMk) = ~M+h) X time-reversal
T=JC TM(K) T = +M(—k) TR implements

time-reversal

Encore
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CAZ Classification of Ordinary PhCs

Symmetry Action Clas:;ﬁed Physical meaning
C CM(k) C = —M(—k) +PH real'states"
remain real
— i — _ implements
J=o3@id | JM(k)J=—M(+k) X time-reversal
T=JC TM(K) T = +M(—k) TR implements

time-reversal

= Ordinary PhCs are of class BDI

Encore
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Comparison Between Photonics and Quantum Mechanics

Material Photonics Quantum mechanics
ordinar class BDI class Al
y +PH, +TR, y +TR
exhibiting class Alll class A/All
edge currents X none/-TR

Important consequences
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Comparison Between Photonics and Quantum Mechanics

Material Photonics Quantum mechanics
ordinar class BDI class Al
y +PH, +TR, x +TR
exhibiting class Alll class A/All
edge currents X none/-TR

Important consequences

o Class BDI not topologically trivial
(also relevant in theory of topological superconductors)
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Comparison Between Photonics and Quantum Mechanics

Conclusion

Encore
Material Photonics Quantum mechanics
ordinar class BDI class Al
y +PH, +TR, y +TR
exhibiting class Alll class A/All
edge currents X none/-TR
Important consequences

o Class BDI not topologically trivial

(also relevant in theory of topological superconductors)
o Existing derivations of topological effects in crystalline

solids do not automatically apply to photonic crystals
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What about other symmetries’
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Symmetries of Maxwell Operator in Matter

Product structure of M = W~1 Rot:

UMU™ = 4M

URotU~! = +Rot
uwu-t=+w

(Signs may be different)
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Symmetries of Maxwell Operator in Matter

Product structure of M = W~1 Rot:

UMU™ =4M

URotU~! = +Rot
uwu-t=+w

(Signs may be different)
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Symmetries of Maxwell Operator in Matter

Product structure of M = W~1 Rot:

URotU ! = iRot}

-1 _
Uwu-"t=4+w UMU™ =M

(Signs may be different)

What form do the symmetries U take?

Encore
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Symmetries of the Free Maxwell Operator Rot
Rot = (—iOVX +|0V ) =—0® V™

Symmetries
Forn=1,2,3

Encore
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Symmetries of the Free Maxwell Operator Rot

H X
Rot = (—iOVX +|0V ) =—0® V™

Symmetries
Forn=1,2,3
@ Complex conjugation C (antilinear)
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Symmetries of the Free Maxwell Operator Rot

H X
Rot = (—iOVX +|0v ) =—0® V™

Symmetries

Forn=1,2,3
@ Complex conjugation C (antilinear)
Q@ Jy = op, ®id (linear)
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Symmetries of the Free Maxwell Operator Rot

H X
Rot = (—iOVX +|0v ) =—0® V™

Symmetries

Forn=1,2,3
@ Complex conjugation C (antilinear)
Q@ Jy = op, ®id (linear)
@ T, = J,C(antilinear)
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Symmetries of the Free Maxwell Operator Rot

H X
Rot = (—iOVX +|0v ) =—0® V™

Symmetries

Forn=1,2,3
@ Complex conjugation C (antilinear)
Q@ Jy = op, ®id (linear)
@ T, = J,C(antilinear)

Connection to symmetries in ordinary materials: J = J3, T = T;
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Symmetries of the Free Maxwell Operator Rot

B 0 +HIVY) «
Rot = <—iVX 0 > =—-0o®V

Action of symmetries on Rot
@ CRotC = —Rot
@ JyRotJ;! = —Rot,n =1,3
JoRotJy ' = +Rot
@ T,RotT,! = +Rot,n=1,3
ToRotT,! = —Rot
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Symmetries of Maxwell Operator in Matter

Product structure of M = W~1 Rot:

-1 _
URotU~! = iRot} UM, U-Y — M,

uwu-t =+w
(Signs may be different)

SymmetriesU=T,,C,J,,n=1,2,3

Encore
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realized
CAZ

A none

Alll h=x Ja=x Js=x
Al T = +TR T3 = +TR C=+TR
All T. = —TR

D T. = +PH T3 = +PH C=+PH
C T, = —PH

ST

u
it
N
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realized
CAZ
BDI T. = +TR C=+TR Ts = +TR
C=+PH T, =+PH C=+PH
BDI C=+TR Ts = +TR 7. = +TR
Ts = +PH T, = +PH Ts = +PH
DIl T. = —-TR T. = —TR T. = —TR
T. = +PH T3 = +PH C=+PH
T = —PH T = —PH T = —PH
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Symmetries CAZ class £, 1 X Realized?
present
none A C C ves
T Al R iR Yes
Js Al C ves
c D R R Unknown
C J3, Ty BDI R 0 Yes
R iR
1, TorTs cl - = x Yes

u]
8]
I
u
it
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Symmetries CAZ class £, 1 X Realized?
present
none A C C ves
T Al R iR Yes
Js Al C e
c D R R Unknown
C Js, Ts BDI R Yes
R iR
1, TorTs al - = x Yes
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Symmetries | CAZ Reduced K-group in dimension
present class
d=1 | d=2 | d=3 | d=4
none A 0 Z Z3 7"
T3 = +TR Al 0 0 0 Z
J3 =y Alll Z VA VA 78
C=+PH D Zo Z%@Z Z%@Z3 Z%@Z‘i
J3 = x 2 3 4
C= +PH BDI Y/ Z Z Y/
To = —PH 4
T, = +TR d 0 0 7 Y/
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Symmetries | CAZ Reduced K-group in dimension
present class
d=1 | d=2 | d=3 | d=4
none A 0 Z z’ zr
T3 = +TR Al 0 0 0 z
h=x | Al |z z? z! Z
C = +PH D Zs L30L | L3OL° | L3O L
J3 =X 2 & -
| Z v/ Z -
C=+PH °b
T, = —PH 4
T3 = +TR c ’ ’ - ’
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Part 4
Effective Models
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Tight-Binding Models from Ad Hoc Considerations
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Tight-Binding Models from Ad Hoc Considerations

N, Ny

@ Obtain band spectrum by solving a second-order equation for

electric/magnetic field only, e. 9. M(k)Z o5 (k) = An (k)2 (k)
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Tight-Binding Models from Ad Hoc Considerations

N, Ny

@ Obtain band spectrum by solving a second-order equation for

electric/magnetic field only, e. 9. M(k)Z o5 (k) = An (k)2 (k)
@ Pick afamily of bands, e. g. with a conical intersection (A, Y1)
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Tight-Binding Models from Ad Hoc Considerations

N, Ny

@ Obtain band spectrum by solving a second-order equation for

electric/magnetic field only, e. 9. M(k)Z o5 (k) = An (k)2 (k)
@ Pick afamily of bands, e. g. with a conical intersection (A, Y1)
@ Use a graphene-type tight-binding model to understand light

propagation for states located near intersection
] = =
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Caution!

Procedure yields tight-binding operator Mg
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Caution!

Procedure yields tight-binding operator M

Problems
@ Connection of Mg to dynamics?
@ Nature of symmetries?
@ Correct notion of Berry connection?

Encore
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Assume y = 0 (no bianisotropy).
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First- vs. Second-Order Framework

first order second order

o(q) =M(y) = (@+m)(y) =0

_ 0 +ie VX 9 etgxuiyx 0
M= (7i‘u‘—1v>< 0 ) = M= = ( o X)

0 utvrely

Encore
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First- vs. Second-Order Framework

first order second order

a(g) =mG) = @+m)(g) =0

M block-offdiagonal == M? block-diagonal

Encore
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First- vs. Second-Order Framework

first order second order
o (E\ _ . (E (02 + ME)E=0
0 () =M(n) = {(af + M, )H =0

_ 0 +ie ' VX o (ME& O
M= (—i,u*1 A% 0 ) = M= ( 0 MEIH)
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First- vs. Second-Order Framework

first order second order
. (E E (02 + ME)E=0
_ M( ) t EE
0 () =M(n) = {(af + M2, )H =0
_ 0 +ie ' VX o (ME& O
M=(oee T ) = o= )

MK)pa(K) = wn(k) pa(k) == M(K)* 2, (k) = (wn(K))” 2n(K)

Encore
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First- vs. Second-Order Framework

first order second order
. (E E (02 + ME)E=0
_ M( ) t EE
0 () =M(n) = {(af + M2, )H =0
_ 0 +ie ' VX o (ME O
M=(oee T ) = o= )

Conclusion  Encore

M(K)pa(K) = wn(k) pa(k) == M(K)Z 95 (K) = (wn(K))” 5 (K)
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First- vs. Second-Order Framework

first order second order
o (E\ . (E (0} + ME)E=0
0 () =M(n) = {(af + M2, )H =0
0 +ie 1 vX ME& 0
M= (—i,flvx 0 ) = M= ( 0 ME,H)

MK)pn(k) = wn(K) on(k) = M(K)Z @E(K) = (wn(k)” GE(K)
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First- vs. Second-Order Framework

Compute frequency bands starting from

M(K)ZeoE (k) = (An(K))? 05 (K)
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First- vs. Second-Order Framework

Compute frequency bands starting from

M(K)ZeoE (k) = (An(K))? 05 (K)

Assumption )\, (k) > 0 = yields |w| spectrum

Encore
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First- vs. Second-Order Framework

Compute frequency bands starting from
2
M(K)Eeon(K) = (An(K))” 5 (k)
Assumption )\, (k) > 0 = yields |w| spectrum

~ Sign important for dynamics!

0= (87 + M(k)?) (:) = (9 +iM(K)) (9 — iM(K)) <:>
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Effective Models
w spectrum vs. |w| spectrum

Encore

First-order formulation

M(k)n (k) = wn(k) ¢n(k)

Second-order formulation

M(k)%n (k) = |wn(K)|* on(K)




Intro

Schroédinger Formalism

Topological Insulators

Photonic Topological Insulators
w spectrum vs.

Effective Models

Conclusion
w| spectrum

]

Encore

Ny, Ny

o Points X; and Y; are artificial band crossings

N
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]

Encore

Ny, Ny

k
o Points X; and Y; are artificial band crossings
@ No graphene-like physics

[m]

~ eigenfunctions well-behaved at artificial crossings

=
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Symmetries

Classification of (anti-)unitary U with U? = +id with
UM(K)2 U™t = M(%k)?

in Cartan-Altland-Zirnbauer scheme,
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Symmetries

Classification of (anti-)unitary U with U? = +id with
UM(K)2 U™t = M(%k)?
in Cartan-Altland-Zirnbauer scheme, e. g.

M(K) T = +M(—k)

CM(k)C = —M(—k)
} {:» TM(K)? T = +M(—k)?

= CM(K)2C = +M(—k)?
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Symmetries

Classification of (anti-)unitary U with U? = +id with
UM(K)2 U™t = M(%k)?
in Cartan-Altland-Zirnbauer scheme, e. g.

CM(k)C = —M(—kK) M(K) T = +M(—k)
= CM(k)2C = +M(—k)2} Ve {;» TM(K)2T = +M(—k)?

= No way to distinguish PH and TR symmetry!
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Symmetries

Classification of (anti-)unitary U with U? = +id with
UM(K)2 U™t = M(%k)?
in Cartan-Altland-Zirnbauer scheme, e. g.

CM(k) C = —M(—kK) M(K) T = +M(—k)
= CM(k)2C = +M(—k)2} Ve {;» TM(K)2 T = +M(—k)?

=- No way to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry

Encore
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Symmetries

Classification of (anti-)unitary U with U? = +id with
UM(K)2 U™t = M(%k)?
in Cartan-Altland-Zirnbauer scheme, e. g.

CM(k) C = —M(—kK) M(K) T = +M(—k)
= CM(k)2C = +M(—k)2} Ve {;» TM(K)2 T = +M(—k)?

=- No way to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry

= CAZ classification impossible in second-order framework!

Encore
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Proper definition of the Berry Connection

A(k) =i {@n(k), Vign(k)),, = i {@n(k), W Vion(k))
=i {@n(k), e Vien(k)) + i (oh (k), 1t Viegh (Kk))

o Berry connection sometimes computed using only £ (k)
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Proper definition of the Berry Connection

A(k) =i {@n(k), Vign(k)),, = i {@n(k), W Vion(k))
=i {@n(k), e Vien(k)) + i (oh (k), 1t Viegh (Kk))

o Berry connection sometimes computed using only £ (k)
o However: HE(t)Hi = (E(t), e E(t)) not conserved quantity!
o = Af(k) =i {ph(k),e Vigh(k)) not a connection
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Proper definition of the Berry Connection

A(k) =i {@n(k), Vkson(k)>w—l<90n (k), WV pn(K))
= i (pp(K), € Vipn(K)) + i (o} (k), 11 Vier (K))

Berry connection sometimes computed using only £ (k)

©

However: |[E(t) ||§ = (E(t),e E(t)) not conserved quantity!
= Af(k) =i (@h(k), e Viph (k) not a connection
Magnetic field necessary to compute Berry connection!

© 0 o0 o

Same arguments hold for /.
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Effective Tight-Binding Models

Goal: Find
@ an orthogonal projection P and

@ asimpler effective operator Mg
(equivalent to a tight-binding operator)

so that for states from ran P we have

e Mp — o=itMet p | crror,

Encore
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For topological effects: M and M5 which enter

e Mp — o tMeit p 4 orror
should be in the same CAZ class




Intro  Schrodinger Formalism  Topological Insulators  Photonic Topological Insulators  Effective Models ~ Conclusion

Effective Models Should Retain All Symmetries!

For topological effects: M and M5 which enter
e Mp — o tMeit p 4 orror

should be in the same CAZ class

o M and Mg possess the same number and type of symmetries

Encore
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Effective Models Should Retain All Symmetries!

For topological effects: M and M.¢ which enter
e Mp — o tMeit p 4 orror

should be in the same CAZ class

o M and Mg possess the same number and type of symmetries

o Due to misclassification of PhCs in earlier works: disregarded
in the literature



Intro

Schrodinger Formalism  Topological Insulators  Photonic Topological Insulators  Effective Models
Effective Dynamics

Conclusion  Encore

o CMP paper explains how to compute effective tight-binding
operators in the presence of adiabatic perturbations.
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Effective Dynamics

o CMP paper explains how to compute effective tight-binding
operators in the presence of adiabatic perturbations.

@ 2015 preprint derives correct ray optics equations and
explains how they intertwine with C symmetry.
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Conclusion
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Covered in Today’s Talk

Part 1
Schrodinger Formalism of Electromagnetism
e dynamical Maxwell equations <= i0;¥ = M¥ withM* =M
~ adaptation of quantum mechanical techniques to electromagnetism
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Covered in Today’s Talk

Part 1
Schrodinger Formalism of Electromagnetism
e dynamical Maxwell equations <= i0;¥ = M¥ withM* =M
~ adaptation of quantum mechanical techniques to electromagnetism

Part 2

Primer on Topological Insulators

e Restson ioy = HU

Topological classes of H «+— symmetries of H
3 types of symmetries (TR, £PH, x)

Phases inside of topological classes

Bulk-edge correspondences

Encore
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Covered in Today’s Talk

Part 3

Photonic Topological Insulators

e Schrodinger formalism of electromagnetism
~~ application of classification scheme for Tls

e Complete classification table in publication

e Ordinary material in class BDI (3 symmetries)
~ different from time-reversal-invariant quantum systems!
~ each symmetry can be broken individually

Encore
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Covered in Today’s Talk

Part 3

Photonic Topological Insulators

e Schrodinger formalism of electromagnetism
~~ application of classification scheme for Tls

e Complete classification table in publication

e Ordinary material in class BDI (3 symmetries)
~ different from time-reversal-invariant quantum systems!
~ each symmetry can be broken individually

Part 4

Effective light dynamics

e For topological effects: M and Mg of same topological class

e For adiabatic perturbations: explicit form of corrections available
e Ray optics equations also available

Encore
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Open Problems

o Better understanding of topological classes BDI and Alll
~ also relevant for topological superconductors
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Open Problems

o Better understanding of topological classes BDI and Alll

o Effective dynamics for classes BDI, D and Alll ~ edge currents
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Open Problems

o Better understanding of topological classes BDI and Alll

o Effective dynamics for classes BDI, D and Alll

o Bulk-edge correspondences
~ photonic analog of transverse conductivity?
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Open Problems

o Better understanding of topological classes BDI and Alll

o Effective dynamics for classes BDI, D and Alll

o Bulk-edge correspondences
~» photonic analog of transverse conductivity?

o Effects of non-linearity ~ topological solitons?
o Persistence of edge currents in presence of random impurities
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Open Problems

o Better understanding of topological classes BDI and Alll

o Effective dynamics for classes BDI, D and Alll

o Bulk-edge correspondences
~» photonic analog of transverse conductivity?

o Effects of non-linearity ~ topological solitons?
o Persistence of edge currents in presence of random impurities
o Periodic waveguide arrays
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Periodic Waveguide Arrays

o Very interesting experiments by Mikael Rechtsman et al

@ Backscattering-free unidirectional boundary currents measured
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Periodic Waveguide Arrays

o Very interesting experiments by Mikael Rechtsman et al

@ Backscattering-free unidirectional boundary currents measured
o Ordinary material (silica) = class BDI
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Periodic Waveguide Arrays

o Very interesting experiments by Mikael Rechtsman et al

@ Backscattering-free unidirectional boundary currents measured
o Ordinary material (silica) = class BDI
o Experiments explained by use of effective models
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Thank you for your attention!
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Relevance of symmetries for classification

Mathematically irrelevant symmetries, e. g.
@ T, M, T, = +M, (linear, commuting)
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Relevance of symmetries for classification

Mathematically irrelevant symmetries, e. g.
@ T, M, T, = +M, (linear, commuting)
@ Parity (PU)(x) = ¥(—x) (linear, anticommuting)
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Relevance of symmetries for classification

Physically irrelevant symmetries
Symmetry leads to unphysical conditions on weights, e. g.

cwWC=-Ww < M, C=+M,

impliese € iR, i € iR, x € iR (keepin minde = ¢* and y = u*)
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Relevance of symmetries for classification

Physically irrelevant symmetries
Symmetry leads to unphysical conditions on weights, e. g.

cwWC=-Ww < M, C=+M,

impliese € iR, 4 € iR, y € iR (keepin minde = ¢* and y = u*)

Encore
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